Apache Flink是新一代的分布式流式数据处理框架,它统一的处理引擎既可以处理批数据(batch data)也可以处理流式数据(streaming data)。在实际场景中,Flink利用Apache Kafka作为上下游的输入输出十分常见,本文将给出一个可运行的实际例子来集成两者。
1. 目标
本例模拟中将集成Kafka与Flink:Flink实时从Kafka中获取消息,每隔10秒去统计机器当前可用的内存数并将结果写入到本地文件中。
2. 环境准备
- Apache Kafka 0.11.0.0
- Apache Flink 1.3.1
- Gradle 3.5 (版本号不是强要求)
本例运行在Windows环境,但可以很容易地移植到其他平台上。
3. 创建Flink Streaming工程
本例使用Intellij IDEA作为项目开发的IDE。首先创建Gradle project,group为‘huxihx.flink.demo‘,artifact id为‘flink-kafka-demo’,version为‘1.0-SNAPSHOT’。整个项目结构如图所示:
4. 增加kafka和kafka-connector依赖
增加下列gradle依赖:
compile group: ‘org.apache.flink‘, name: ‘flink-connector-kafka-0.10_2.11‘, version: ‘1.3.1‘ compile group: ‘org.apache.flink‘, name: ‘flink-streaming-java_2.11‘, version: ‘1.3.1‘ compile group: ‘org.apache.kafka‘, name: ‘kafka-clients‘, version: ‘0.11.0.0‘
设置gradle打包依赖
jar { manifest { attributes( "Manifest-Version": 1.0, "Main-Class": "huxihx.KafkaMessageStreaming") } from { configurations.compile.collect { it.isDirectory() ? it : zipTree(it) } } into(‘assets‘) { from ‘assets‘ } }
5. 启动Flink环境(本例使用local测试环境)
F:\SourceCode\flink-1.3.1 > bin\start-local.bat Starting Flink job manager. Webinterface by default on http://localhost:8081/. Don‘t close this batch window. Stop job manager by pressing Ctrl+C.
6. 启动Kafka单节点集群
启动Zookeeper:
cd F:\SourceCode\zookeeper > bin\zkServer.cmd
启动Kafka broker:
> cd F:\SourceCode\kafka_1 > set JMX_PORT=9999 > bin\windows\kafka-server-start.bat F:\\SourceCode\\configs\\server.properties
7. 代码开发
代码主要由两部分组成:
- MessageSplitter类、MessageWaterEmitter类和KafkaMessageStreaming类:Flink streaming实时处理Kafka消息类
- KafkaProducerTest类和MemoryUsageExtrator类:构建Kafka测试消息
本例中,Kafka消息格式固定为:时间戳,主机名,当前可用内存数。其中主机名固定设置为machine-1,而时间戳和当前可用内存数都是动态获取。由于本例只会启动一个Kafka producer来模拟单台机器发来的消息,因此在最终的统计结果中只会统计machine-1这一台机器的内存。下面我们先来看flink部分的代码实现。
MessageSplitter类(将获取到的每条Kafka消息根据“,”分割取出其中的主机名和内存数信息)
public class MessageSplitter implements FlatMapFunction<String, Tuple2<String, Long>> { @Override public void flatMap(String value, Collector<Tuple2<String, Long>> out) throws Exception { if (value != null && value.contains(",")) { String[] parts = value.split(","); out.collect(new Tuple2<>(parts[1], Long.parseLong(parts[2]))); } } }
MessageWaterEmitter类(根据Kafka消息确定Flink的水位)
public class MessageWaterEmitter implements AssignerWithPunctuatedWatermarks<String> { @Nullable @Override public Watermark checkAndGetNextWatermark(String lastElement, long extractedTimestamp) { if (lastElement != null && lastElement.contains(",")) { String[] parts = lastElement.split(","); return new Watermark(Long.parseLong(parts[0])); } return null; } @Override public long extractTimestamp(String element, long previousElementTimestamp) { if (element != null && element.contains(",")) { String[] parts = element.split(","); return Long.parseLong(parts[0]); } return 0L; } }
KafkaMessageStreaming类(Flink入口类,封装了对于Kafka消息的处理逻辑。本例每10秒统计一次结果并写入到本地文件)
public class KafkaMessageStreaming { public static void main(String[] args) throws Exception { final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.enableCheckpointing(5000); // 非常关键,一定要设置启动检查点!! env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); Properties props = new Properties(); props.setProperty("bootstrap.servers", "localhost:9092"); props.setProperty("group.id", "flink-group"); FlinkKafkaConsumer010<String> consumer = new FlinkKafkaConsumer010<>(args[0], new SimpleStringSchema(), props); consumer.assignTimestampsAndWatermarks(new MessageWaterEmitter()); DataStream<Tuple2<String, Long>> keyedStream = env .addSource(consumer) .flatMap(new MessageSplitter()) .keyBy(0) .timeWindow(Time.seconds(10)) .apply(new WindowFunction<Tuple2<String, Long>, Tuple2<String, Long>, Tuple, TimeWindow>() { @Override public void apply(Tuple tuple, TimeWindow window, Iterable<Tuple2<String, Long>> input, Collector<Tuple2<String, Long>> out) throws Exception { long sum = 0L; int count = 0; for (Tuple2<String, Long> record: input) { sum += record.f1; count++; } Tuple2<String, Long> result = input.iterator().next(); result.f1 = sum / count; out.collect(result); } }); keyedStream.writeAsText(args[1]); env.execute("Flink-Kafka demo"); } }
实现了这些代码之后我们已然可以打包进行部署了,不过在其之前我们先看下Kafka producer测试类的实现——该类每1秒发送一条符合上面格式的Kafka消息供下游Flink集群消费。
MemoryUsageExtrator类(很简单的工具类,提取当前可用内存字节数)
public class MemoryUsageExtrator { private static OperatingSystemMXBean mxBean = (OperatingSystemMXBean) ManagementFactory.getOperatingSystemMXBean(); /** * Get current free memory size in bytes * @return free RAM size */ public static long currentFreeMemorySizeInBytes() { return mxBean.getFreePhysicalMemorySize(); } }
KafkaProducerTest类(发送Kafka消息)
public class KafkaProducerTest { public static void main(String[] args) throws Exception { Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 0); props.put("batch.size", 16384); props.put("linger.ms", 1); props.put("buffer.memory", 33554432); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); Producer<String, String> producer = new KafkaProducer<>(props); int totalMessageCount = 10000; for (int i = 0; i < totalMessageCount; i++) { String value = String.format("%d,%s,%d", System.currentTimeMillis(), "machine-1", currentMemSize()); producer.send(new ProducerRecord<>("test", value), new Callback() { @Override public void onCompletion(RecordMetadata metadata, Exception exception) { if (exception != null) { System.out.println("Failed to send message with exception " + exception); } } }); Thread.sleep(1000L); } producer.close(); } private static long currentMemSize() { return MemoryUsageExtrator.currentFreeMemorySizeInBytes(); } }
8. 部署Flink jar包
8.1 打包Flink jar包
> cd flink-kafka-demo > gradle clean build
生成的jar包在项目目录下的build/libs/下,本例中是flink-kafka-demo-1.0-SNAPSHOT.jar
8.2 部署jar包
> bin\flink.bat run -c huxihx.KafkaMessageStreaming F:\\Projects\\flink-kafka-demo\\build\\libs\\flink-kafka-demo-1.0-SNAPSHOT.jar test F:\\temp\result.txt
KafkaMessageStreaming类接收两个命令行参数,第一个是Kafka topic名字,第二个是输出文件路径
部署成功之后,可以在Flink控制台(本例中是http://localhost:8081/)中看到job已成功部署,如下图所示:
8. 运行KafkaProducerTest
运行Kafka producer,给Flink job创建输入数据,然后启动一个终端,监控输出文件的变化,
> cd F:\temp > tail -f result.txt (machine-1,3942129078) (machine-1,3934864179) (machine-1,4044071321) (machine-1,4091437056) (machine-1,3925701836) (machine-1,3753678438) (machine-1,3746314649) ......
可以看到,Flink每隔10s就会保存一条新的统计记录到result.txt文件中,该记录会统计主机名为machine-1的机器在过去10s的平均可用内存字节数。
9. 总结
本文给出了一个可运行的Flink + Kafka的项目配置及代码实现。值得注意的是,上面例子中用到的Flink Kafka connector使用了Kafka新版本consumer的API,因此不再需要连接Zookeeper信息。