[luogu]P3938 斐波那契[数学]

[luogu]P3938

斐波那契

题目描述

小 C 养了一些很可爱的兔子。 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子。我们假定, 在整个过程中兔子不会出现任何意外。

小 C 把兔子按出生顺序,把兔子们从 1 开始标号,并且小 C 的兔子都是 1 号兔子和 1 号兔子的后代。如果某两对兔子是同时出生的,那么小 C 会将父母标号更小的一对优先标 号。

如果我们把这种关系用图画下来,前六个月大概就是这样的:

图来自luogu:

其中,一个箭头 A → B 表示 A 是 B 的祖先,相同的颜色表示同一个月出生的兔子。

为了更细致地了解兔子们是如何繁衍的,小 C 找来了一些兔子,并且向你提出了 m 个 问题:她想知道关于每两对兔子 a_iai?和 b_ibi? ,他们的最近公共祖先是谁。你能帮帮小 C 吗?

一对兔子的祖先是这对兔子以及他们父母(如果有的话)的祖先,而最近公共祖先是指 两对兔子所共有的祖先中,离他们的距离之和最近的一对兔子。比如,5 和 7 的最近公共祖 先是 2,1 和 2 的最近公共祖先是 1,6 和 6 的最近公共祖先是 6。

输入输出格式

输入格式:

从标准输入读入数据。 输入第一行,包含一个正整数 m。 输入接下来 m 行,每行包含 2 个正整数,表示 a_iai? 和 b_ibi? 。

输出格式:

输出到标准输出中。 输入一共 m 行,每行一个正整数,依次表示你对问题的答案。

输入输出样例

输入样例1#:

5
1 1
2 3
5 7
7 13
4 12

输出样例1#:

1
1
2
2
4

说明

【数据范围与约定】 子任务会给出部分测试数据的特点。如果你在解决题目中遇到了困难,可以尝试只解 决一部分测试数据。 每个测试点的数据规模及特点如下表:

特殊性质 1:保证 ai?,bi? 均为某一个月出生的兔子中标号最大的一对兔子。例如,对 于前六个月,标号最大的兔子分别是 1, 2, 3, 5, 8, 13。

特殊性质 2:保证∣ai?−bi?∣≤1。



我一开始还以为是有什么公式可以算,真的是神经病。

发现每一个节点减去一个最大的斐波那契数就是其父亲节点,这有很多方法可以证明,比较严谨的是数学归纳法。

理解的话(找规律,证明只是求个安心,oi不需要证明),其实仔细想想就会发现第n个月的数量为f(n)=f(n-1)+f(n-2),每n+1月增加f(n+1)-f(n)=f(n-1)。

注意每次新增加的节点会在1那边开始加起,为f(n-1)+1,结束应该是下一个月连在1的开始也就应该是f(n)+1,而在这一个月是增加了f(n-1),而显然f(n-1)就是小于[f(n-1)+1,f(n)]的最大的斐波那契数。

那我们的命题就得证,虽说可能证的不严谨,但的确是这么一回事。

接下来还有比较坑爹的代码部分,我开始也发现了这个,但不晓得会有什么用,后来才知道就是很暴力的往上爬,爬到一样的就行了,真的是好朴素啊。

还有就是一个个爬还会TLE,要求真多,一个数不可能减去两个一样的斐波那契数,所以就一次减到完,能减就减。[蒟蒻打了二分查找结果TLE]

时间复杂度:O(60m)因为f60就超过10^12,真的是可恶。

代码:

 1 //2017.11.2
 2 //math
 3 #include<iostream>
 4 #include<cstdio>
 5 #include<cstring>
 6 using namespace std;
 7 typedef long long ll ;
 8 inline ll read();
 9 namespace lys{
10     const ll inf = 1e12 ;
11     ll f[66];
12     int m;
13     ll a,b;
14     void swap(ll &x,ll &y){int t=x;x=y;y=t;}
15     int main(){
16         int i,l,r,mid;
17         scanf("%d",&m);
18         f[0]=1,f[1]=1;
19         for(i=2;i<=61;i++) f[i]=f[i-1]+f[i-2];
20         while(m--){
21             a=read(); b=read();
22             for(i=60;i>=1;i--){
23                 if(a==b) break ;
24                 if(a>f[i]) a-=f[i];
25                 if(b>f[i]) b-=f[i];
26             }
27             printf("%lld\n",a);
28         }
29         return 0;
30     }
31 }
32 int main(){
33     lys::main();
34     return 0;
35 }
36 inline ll read(){
37     ll kk=0,ff=1;
38     char c=getchar();
39     while(c<‘0‘||c>‘9‘){
40         if(c==‘-‘) ff=-1;
41         c=getchar();
42     }
43     while(c>=‘0‘&&c<=‘9‘) kk=kk*10+c-‘0‘,c=getchar();
44     return kk*ff;
45 }
时间: 2024-10-05 05:50:19

[luogu]P3938 斐波那契[数学]的相关文章

luogu P1962 斐波那契数列

二次联通门 : luogu P1962 斐波那契数列 /* luogu P1962 斐波那契数列 矩阵快速幂求feibonacii 矩阵为 1 1 1 0 做N - 2次方就好 */ #include <cstdio> #define Mod 1000000007 #define Max 2 void read (long long &now) { now = 0; register char word = getchar (); while (word < '0' || wor

Luogu P1306 斐波那契公约数

这道题其实是真的数学巨佬才撸的出来的题目了 但如果只知道结论但是不知道推导过程的我感觉证明无望 首先这道题肯定不能直接搞,而且题目明确说明了一些方法的问题 所以就暗示我们直接上矩阵了啦 但是如果直接搞还要高精度,不仅很烦而且绝壁TLE 所以我们引出性质,其中f[x]表示斐波那契数列的第x项: gcd(f[n],f[m])=f[gcd(n,m)] 具体的超详细的证明戳这里 然后题意相当于对f[gcd(n,m)]取膜1e9,就是最基本的矩阵优化了 关于矩阵优化斐波那契的板子题看这里 关于这题的COD

洛谷P3938 斐波那契

题目戳 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子.我们假定, 在整个过程中兔子不会出现任何意外. 小 C 把兔子按出生顺序,把兔子们从 1 开始标号,并且小 C 的兔子都是 1 号兔子和 1 号兔子的后代.如果某两对兔子是同时出生的,那么小 C 会将父母标号更小的一对优先标 号. 如果我们把这种关系用图画下来,前六个月大概就是这样的: 其中,一个

P3938 斐波那契

坑爹入口 我们想一下,第几个生的.那他的孩子就是排在新一波出生的第几个上的. 然后我们通过瞎试得到.10^12<斐波那契的第60项.就是说我们不用建图(也建不下),每次最多60次暴力就可以了. 出题人真是个人才. #include<cstdio> #include<iostream> #include<algorithm> using namespace std; long long f[61]; int find(long long val) { int l=1

[Luogu] 广义斐波那契数列

https://www.luogu.org/problemnew/show/P1349 题解:https://www.zybuluo.com/wsndy-xx/note/1152988 原文地址:https://www.cnblogs.com/shandongs1/p/9059210.html

矩阵乘法&amp;&amp;矩阵快速幂&amp;&amp;最基本的矩阵模型——斐波那契数列

矩阵,一个神奇又令人崩溃的东西,常常用来优化序列递推 在百度百科中,矩阵的定义: 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵.这一概念由19世纪英国数学家凯利首先提出. 好,很高深对吧.那我们就更加直接地理解一下矩阵的实质:二维数组 好了这个SB都会,就不解释了 同二维数组一样,矩阵是一个'纵横排列的二维数据表格',它一般是一个n*m的二维数组,其中n*m表示它有n行m列 每一位上的数可以用下标i,j来表示,形如这样一个矩阵:

ACM/ICPC算法训练 之 数学很重要—斐波拉契●卢卡斯数列(HNNUOJ 11589)

看到这个标题,貌似很高大上的样子= =,其实这个也是大家熟悉的东西,先给大家科普一下斐波拉契数列. 斐波拉契数列 又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.…… 在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 在现代物理.准晶体结构.化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以<斐波纳契数列季刊>为名的一份数学杂志,用于专门刊载这方面的

ACM学习历程—Hihocoder 1164 随机斐波那契(数学递推)

时间限制:5000ms 单点时限:1000ms 内存限制:256MB 描述 大家对斐波那契数列想必都很熟悉: a0 = 1, a1 = 1, ai = ai-1 + ai-2,(i > 1). 现在考虑如下生成的斐波那契数列: a0 = 1, ai = aj + ak, i > 0, j, k从[0, i-1]的整数中随机选出(j和k独立). 现在给定n,要求求出E(an),即各种可能的a数列中an的期望值. 输入 一行一个整数n,表示第n项.(1<=n<=500) 输出 一行一个

【洛谷mNOIP模拟赛Day1】T1 斐波那契

题目传送门:https://www.luogu.org/problemnew/show/P3938 这题出得特别吼啊~~ 通过打表或者大胆猜想斐波那契数列的一些性质,我们不难发现对于一只兔子$x$,其父亲必为$x-Fk$($F$为斐波那契数列,且$F_{k}$为不大于$x$的最大数字),举个例子:$7-5=2$,$11-8=3$,对于点$x$和点$y$,我们分别求出其所有直系祖宗,然后扫一遍即可. 由于斐波那契数列为指数级增长,故向上跳的复杂度为一个$log$级别,时间复杂度为$O(m*log(