编程算法 - 并查集(disjoint set) 代码(C)

并查集(disjoint set) 代码(C)

本文地址: http://blog.csdn.net/caroline_wendy

并查集(disjoint set)是一种常用的数据结构.树形结构, 包含查询(find)合并(unite)操作.

时间复杂度O(a(n)), 比O(logn)要快.

代码:

class DisjoinSet {
	static const int MAX_N = 10000;
	int par[MAX_N];
	int rank[MAX_N];
public:
	void init(int n) {
		for (int i=0; i<n; i++) {
			par[i] = i;
			rank[i] = 0;
		}
	}
	int find (int x) {
		if(par[x] == x) {
			return x;
		} else {
			return par[x] = find(par[x]);
		}
	}
	void unite(int x, int y) {
		x = find(x);
		y = find(y);
		if (x == y) return;
		if (rank[x] < rank[y]) {
			par[x] = y;
		} else {
			par[y] = x;
			if (rank[x] == rank[y]) rank[x]++;
		}
	}
	bool same(int x, int y) {
		return find(x) == find(y);
	}
};

时间: 2024-10-03 12:51:30

编程算法 - 并查集(disjoint set) 代码(C)的相关文章

并查集(Disjoint Set)

在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.这一类问题其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受:即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在规定的运行时间(1-3秒)内计算出试题需要的结果,只能用并查集来描述. 本文地址:http://www.cnblogs.com/archimedes/p/disj

编程算法 - 数组中的逆序对 代码(C)

数组中的逆序对 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 在数组中的两个数字如果前面一个数字大于后面的数字, 则这两个数字组成一个逆序对. 输入一个数组, 求出这个数组中的逆序对的总数. 使用归并排序的方法, 辅助空间一个排序的数组, 依次比较前面较大的数字, 算出整体的逆序对数, 不用逐个比较. 时间复杂度: O(nlogn) 代码: /* * main.cpp * * Created on: 2014.6.12 * Author:

编程算法 - 最长公共子序列(LCS) 代码(C)

最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符串的子序列并一定要连续, 能够包含间隔. 即最长公共子序列问题(LCS, Longest Common Subsequence) 使用动态规划, 假设字符相等, 两个字符串就依次递增一位, 一直到字符串的结尾. 代码: /* * main.cpp * * Created on: 2014.7.17

编程算法 - 求1+2+...+n(构造函数) 代码(C++)

求1+2+...+n(构造函数) 代码(C++) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 求1+2+...+n, 要求不能使用乘除法\for\while\if\else\switch\case等关键字及条件判断语句(A?B:C). 可以使用构造函数, 循环求解, 使用数组构造多个类, 使用类的静态变量存储数据. 代码: /* * main.cpp * * Created on: 2014.7.12 * Author: spike */ #inc

模板——最小生成树kruskal算法+并查集数据结构

并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每个点只保存祖先,不保存父亲) 最小生成树kruskal:贪心算法+并查集数据结构,根据边的多少决定时间复杂度,适合于稀疏图 核心思想贪心,找到最小权值的边,判断此边连接的两个顶点是否已连接,若没连接则连接,总权值+=此边权值,已连接就舍弃继续向下寻找: 并查集数据结构程序: #include<ios

[经典算法]并查集

概述: 并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图.求最小生成树的 Kruskal 算法和求最近公共祖先(Least Common Ancestors, LCA)等. 使用并查集时,首先会存在一组不相交的动态集合 S={S1,S2,?,Sk},一般都会使用一个整数表示集合中的一个元素. 每个集合可能包含一个或多个元素,并选出集合中的某个元素作为代表.每个集合中具体包含了哪些元素是不关心的,具体选择哪个

最小生成树Kruskal算法+并查集实现

今天刚掌握Kruskal算法,写下随笔. 对于稀疏图来说,用Kruskal写最小生成树效率更好,加上并查集,可对其进行优化. Kruskal算法的步骤: 1.对所有边进行从小到大的排序. 2.每次选一条边(最小的边),如果如果形成环,就不加入(u,v)中,否则加入.那么加入的(u,v)一定是最佳的. 并查集: 我们可以把每个连通分量看成一个集合,该集合包含了连通分量的所有点.而具体的连通方式无关紧要,好比集合中的元素没有先后顺序之分,只有"属于"与"不属于"的区别.

算法 - 并查集

并查集 - 知乎专栏 POJ 1611(并查集+知识) POJ 2524(并查集) 这个时候我们就希望重新设计一种数据结构,能够高效的处理这三种操作,分别是 MAKE-SET(x),创建一个只有元素x的集合,且x不应出现在其他的集合中 UNION(x, y),将元素x所在集合Sx和元素y所在的集合Sy合并,这里我们假定Sx不等于Sy FIND-SET(x),查找元素x所在集合的代表 并查集的具体实现. 对于有根树或者说森林的表示,可以用一个数组parent来实现. parent[i]记录元素i的

克鲁斯卡尔算法+并查集

算法要点:Kruskal算法的最难点在于怎样判断加入边(x,y)后是否形成了环. 问题可化为:判断边(x,y)的两个顶点x,y在图(实际是森林)mst中最否已经连通.如果已经连通,加入边将形成环:否则,不形成环. 在kruskal算法中,要用到并查集的合并和查找 并查集: 1 int getfa(int k) //找到最祖先 2 { 3 if(fa[k]==k) return k; 4 fa[k]=getfa(fa[k]); 5 return fa[k]; 6 } 7 8 void merge(