Scikit-learn技巧(拓展)总结

Scikit-learn技巧(拓展)总结

本文转载自:http://www.jianshu.com/p/516f009c0875

最近看了《Python数据挖掘入门与实战》,网上有说翻译地不好的,但是说实话,我觉得这本书还是相当不错的。作者Robert Layton是sklearn的开发者之一,书中介绍了很多sklearn使用的技巧和拓展的方法。这里就书中关于sklearn的部分,还有自己学习sklearn的知识,我做一个总结的笔记。

1 scikit-learn基础介绍

1.1 估计器(Estimator)

估计器,很多时候可以直接理解成分类器,主要包含两个函数:

  • fit():训练算法,设置内部参数。接收训练集和类别两个参数。
  • predict():预测测试集类别,参数为测试集。
    大多数scikit-learn估计器接收和输出的数据格式均为numpy数组或类似格式。

1.2 转换器(Transformer)

转换器用于数据预处理和数据转换,主要是三个方法:

  • fit():训练算法,设置内部参数。
  • transform():数据转换。
  • fit_transform():合并fit和transform两个方法。

1.3 流水线(Pipeline)

sklearn.pipeline

流水线的功能:

  • 跟踪记录各步骤的操作(以方便地重现实验结果)
  • 对各步骤进行一个封装
  • 确保代码的复杂程度不至于超出掌控范围

基本使用方法

流水线的输入为一连串的数据挖掘步骤,其中最后一步必须是估计器,前几步是转换器。输入的数据集经过转换器的处理后,输出的结果作为下一步的输入。最后,用位于流水线最后一步的估计器对数据进行分类。
每一步都用元组( ‘名称’,步骤)来表示。现在来创建流水线。

scaling_pipeline = Pipeline([
  (‘scale‘, MinMaxScaler()),
  (‘predict‘, KNeighborsClassifier())
])

1.4 预处理

主要在sklearn.preprcessing包下。

规范化:

  • MinMaxScaler :最大最小值规范化
  • Normalizer :使每条数据各特征值的和为1
  • StandardScaler :为使各特征的均值为0,方差为1

编码:

  • LabelEncoder :把字符串类型的数据转化为整型
  • OneHotEncoder :特征用一个二进制数字来表示
  • Binarizer :为将数值型特征的二值化
  • MultiLabelBinarizer:多标签二值化

1.5 特征

1.5.1 特征抽取

包:sklearn.feature_extraction
特征抽取是数据挖掘任务最为重要的一个环节,一般而言,它对最终结果的影响要高过数据挖掘算法本身。只有先把现实用特征表示出来,才能借助数据挖掘的力量找到问题的答案。特征选择的另一个优点在于:降低真实世界的复杂度,模型比现实更容易操纵。
一般最常使用的特征抽取技术都是高度针对具体领域的,对于特定的领域,如图像处理,在过去一段时间已经开发了各种特征抽取的技术,但这些技术在其他领域的应用却非常有限。

  • DictVectorizer: 将dict类型的list数据,转换成numpy array
  • FeatureHasher : 特征哈希,相当于一种降维技巧
  • image:图像相关的特征抽取
  • text: 文本相关的特征抽取
  • text.CountVectorizer:将文本转换为每个词出现的个数的向量
  • text.TfidfVectorizer:将文本转换为tfidf值的向量
  • text.HashingVectorizer:文本的特征哈希

示例

data.png

CountVectorize只数出现个数

count.png

hash.png

TfidfVectorizer:个数+归一化(不包括idf)

tfidf(without idf).png

1.5.2 特征选择

包:sklearn.feature_selection
特征选择的原因如下:
(1)降低复杂度
(2)降低噪音
(3)增加模型可读性

  • VarianceThreshold: 删除特征值的方差达不到最低标准的特征
  • SelectKBest: 返回k个最佳特征
  • SelectPercentile: 返回表现最佳的前r%个特征

单个特征和某一类别之间相关性的计算方法有很多。最常用的有卡方检验(χ2)。其他方法还有互信息和信息熵。

  • chi2: 卡方检验(χ2)

1.6 降维

包:sklearn.decomposition

  • 主成分分析算法(Principal Component Analysis, PCA)的目的是找到能用较少信息描述数据集的特征组合。它意在发现彼此之间没有相关性、能够描述数据集的特征,确切说这些特征的方差跟整体方差没有多大差距,这样的特征也被称为主成分。这也就意味着,借助这种方法,就能通过更少的特征捕获到数据集的大部分信息。

1.7 组合

包:sklearn.ensemble
组合技术即通过聚集多个分类器的预测来提高分类准确率。
常用的组合分类器方法:
(1)通过处理训练数据集。即通过某种抽样分布,对原始数据进行再抽样,得到多个训练集。常用的方法有装袋(bagging)和提升(boosting)。
(2)通过处理输入特征。即通过选择输入特征的子集形成每个训练集。适用于有大量冗余特征的数据集。随机森林(Random forest)就是一种处理输入特征的组合方法。
(3)通过处理类标号。适用于多分类的情况,将类标号随机划分成两个不相交的子集,再把问题变为二分类问题,重复构建多次模型,进行分类投票。

  • BaggingClassifier: Bagging分类器组合
  • BaggingRegressor: Bagging回归器组合
  • AdaBoostClassifier: AdaBoost分类器组合
  • AdaBoostRegressor: AdaBoost回归器组合
  • GradientBoostingClassifier:GradientBoosting分类器组合
  • GradientBoostingRegressor: GradientBoosting回归器组合
  • ExtraTreeClassifier:ExtraTree分类器组合
  • ExtraTreeRegressor: ExtraTree回归器组合
  • RandomTreeClassifier:随机森林分类器组合
  • RandomTreeRegressor: 随机森林回归器组合

使用举例

AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),
algorithm="SAMME",
n_estimators=200)

解释
装袋(bagging)
:根据均匀概率分布从数据集中重复抽样(有放回),每个自助样本集和原数据集一样大,每个自助样本集含有原数据集大约63%的数据。训练k个分类器,测试样本被指派到得票最高的类。
提升(boosting):通过给样本设置不同的权值,每轮迭代调整权值。不同的提升算法之间的差别,一般是(1)如何更新样本的权值,(2)如何组合每个分类器的预测。其中Adaboost中,样本权值是增加那些被错误分类的样本的权值,分类器C_i的重要性依赖于它的错误率。

1.8 模型评估(度量)

包:sklearn.metrics
sklearn.metrics包含评分方法、性能度量、成对度量和距离计算。
分类结果度量
参数大多是y_true和y_pred。

  • accuracy_score:分类准确度
  • condusion_matrix :分类混淆矩阵
  • classification_report:分类报告
  • precision_recall_fscore_wupport:计算精确度、召回率、f、支持率
  • jaccard_similarity_score:计算jcaard相似度
  • hamming_loss:计算汉明损失
  • zero_one_loss:0-1损失
  • hinge_loss:计算hinge损失
  • log_loss:计算log损失

回归结果度量

  • explained_varicance_score:可解释方差的回归评分函数
  • mean_absolute_error:平均绝对误差
  • mean_squared_error:平均平方误差

多标签的度量

  • coverage_error:涵盖误差
  • label_ranking_average_precision_score:计算基于排名的平均误差Label ranking average precision (LRAP)

聚类的度量

  • adjusted_mutual_info_score:调整的互信息评分
  • silhouette_score:所有样本的轮廓系数的平均值
  • silhouette_sample:所有样本的轮廓系数

1.9 交叉验证

包:sklearn.cross_validation

  • KFold:K-Fold交叉验证迭代器。接收元素个数、fold数、是否清洗
  • LeaveOneOut:LeaveOneOut交叉验证迭代器
  • LeavePOut:LeavePOut交叉验证迭代器
  • LeaveOneLableOut:LeaveOneLableOut交叉验证迭代器
  • LeavePLabelOut:LeavePLabelOut交叉验证迭代器

LeaveOneOut(n) 相当于 KFold(n, n_folds=n) 相当于LeavePOut(n, p=1)。
LeaveP和LeaveOne差别在于leave的个数,也就是测试集的尺寸。LeavePLabel和LeaveOneLabel差别在于leave的Label的种类的个数。
LeavePLabel这种设计是针对可能存在第三方的Label,比如我们的数据是一些季度的数据。那么很自然的一个想法就是把1,2,3个季度的数据当做训练集,第4个季度的数据当做测试集。这个时候只要输入每个样本对应的季度Label,就可以实现这样的功能。
以下是实验代码,尽量自己多实验去理解。

#coding=utf-8
import numpy as np
import sklearnfrom sklearn
import cross_validation
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8],[9, 10]])
y = np.array([1, 2, 1, 2, 3])
def show_cross_val(method):
  if method == "lolo":
    labels = np.array(["summer", "winter", "summer", "winter", "spring"])
    cv = cross_validation.LeaveOneLabelOut(labels)
  elif method == ‘lplo‘:
    labels = np.array(["summer", "winter", "summer", "winter", "spring"])
    cv = cross_validation.LeavePLabelOut(labels,p=2)
  elif method == ‘loo‘:
    cv = cross_validation.LeaveOneOut(n=len(y))
  elif method == ‘lpo‘:
    cv = cross_validation.LeavePOut(n=len(y),p=3)
  for train_index, test_index in cv:
    print("TRAIN:", train_index, "TEST:", test_index)
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]
    print "X_train: ",X_train
    print "y_train: ", y_train
    print "X_test: ",X_test
    print "y_test: ",y_test
if __name__ == ‘__main__‘:
  show_cross_val("lpo")

常用方法

  • train_test_split:分离训练集和测试集(不是K-Fold)
  • cross_val_score:交叉验证评分,可以指认cv为上面的类的实例
  • cross_val_predict:交叉验证的预测。

1.10 网格搜索

包:sklearn.grid_search
网格搜索最佳参数

  • GridSearchCV:搜索指定参数网格中的最佳参数
  • ParameterGrid:参数网格
  • ParameterSampler:用给定分布生成参数的生成器
  • RandomizedSearchCV:超参的随机搜索
    通过best_estimator_.get_params()方法,获取最佳参数。

1.11 多分类、多标签分类

包:sklearn.multiclass

  • OneVsRestClassifier:1-rest多分类(多标签)策略
  • OneVsOneClassifier:1-1多分类策略
  • OutputCodeClassifier:1个类用一个二进制码表示
    示例代码
    #coding=utf-8
    from sklearn import metrics
    from sklearn import cross_validation
    from sklearn.svm import SVC
    from sklearn.multiclass import OneVsRestClassifier
    from sklearn.preprocessing import MultiLabelBinarizer
    import numpy as np
    from numpy import random
    X=np.arange(15).reshape(5,3)
    y=np.arange(5)
    Y_1 = np.arange(5)
    random.shuffle(Y_1)
    Y_2 = np.arange(5)
    random.shuffle(Y_2)
    Y = np.c_[Y_1,Y_2]
    def multiclassSVM():
      X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2,random_state=0)
      model = OneVsRestClassifier(SVC())
      model.fit(X_train, y_train)
      predicted = model.predict(X_test)
      print predicted
    def multilabelSVM():
      Y_enc = MultiLabelBinarizer().fit_transform(Y)
      X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y_enc, test_size=0.2, random_state=0)
      model = OneVsRestClassifier(SVC())
      model.fit(X_train, Y_train)
      predicted = model.predict(X_test)
      print predicted
    if __name__ == ‘__main__‘:
      multiclassSVM()
      # multilabelSVM()

    上面的代码测试了svm在OneVsRestClassifier的包装下,分别处理多分类和多标签的情况。特别注意,在多标签的情况下,输入必须是二值化的。所以需要MultiLabelBinarizer()先处理。

2 具体模型

2.1 朴素贝叶斯(Naive Bayes)

包:sklearn.cross_validation

朴素贝叶斯.png

朴素贝叶斯的特点是分类速度快,分类效果不一定是最好的。

  • GasussianNB:高斯分布的朴素贝叶斯
  • MultinomialNB:多项式分布的朴素贝叶斯
  • BernoulliNB:伯努利分布的朴素贝叶斯

所谓使用什么分布的朴素贝叶斯,就是假设P(x_i|y)是符合哪一种分布,比如可以假设其服从高斯分布,然后用最大似然法估计高斯分布的参数。

高斯分布.png

多项式分布.png

伯努利分布.png

3 scikit-learn扩展

3.0 概览

具体的扩展,通常要继承sklearn.base包下的类。

  • BaseEstimator: 估计器的基类
  • ClassifierMixin :分类器的混合类
  • ClusterMixin:聚类器的混合类
  • RegressorMixin :回归器的混合类
  • TransformerMixin :转换器的混合类

关于什么是Mixin(混合类),具体可以看这个知乎链接。简单地理解,就是带有实现方法的接口,可以将其看做是组合模式的一种实现。举个例子,比如说常用的TfidfTransformer,继承了BaseEstimator, TransformerMixin,因此它的基本功能就是单一职责的估计器和转换器的组合。

3.1 创建自己的转换器

在特征抽取的时候,经常会发现自己的一些数据预处理的方法,sklearn里可能没有实现,但若直接在数据上改,又容易将代码弄得混乱,难以重现实验。这个时候最好自己创建一个转换器,在后面将这个转换器放到pipeline里,统一管理。
例如《Python数据挖掘入门与实战》书中的例子,我们想接收一个numpy数组,根据其均值将其离散化,任何高于均值的特征值替换为1,小于或等于均值的替换为0。
代码实现:

from sklearn.base import TransformerMixin
from sklearn.utils import as_float_array

class MeanDiscrete(TransformerMixin):

  #计算出数据集的均值,用内部变量保存该值。
  def fit(self, X, y=None):
        X = as_float_array(X)
        self.mean = np.mean(X, axis=0)
        #返回self,确保在转换器中能够进行链式调用(例如调用transformer.fit(X).transform(X))
        return self

    def transform(self, X):
        X = as_float_array(X)
        assert X.shape[1] == self.mean.shape[0]
        return X > self.mean

文/Cer_ml(简书作者)
原文链接:http://www.jianshu.com/p/516f009c0875

原文地址:https://www.cnblogs.com/jackchen-Net/p/8110626.html

时间: 2024-10-11 21:37:05

Scikit-learn技巧(拓展)总结的相关文章

Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的垂直搜索引擎,专门为用户提供团购.优惠券的检索:同时存在一个通用的搜索引擎,比如百度,通用搜索引擎希望能够识别出一个Query是否具有O2O检索意图,如果有则调用O2O垂直搜索引擎,获取结果作为通用搜索引擎的结果补充. 我们的目的是学习出一个分类器(classifier),分类器可以理解为一个函数,

Python之扩展包安装(scikit learn)

scikit learn 是Python下开源的机器学习包.(安装环境:win7.0 32bit和Python2.7) Python安装第三方扩展包较为方便的方法:easy_install + packages name 在官网 https://pypi.python.org/pypi/setuptools/#windows-simplified 下载名字为 的文件. 在命令行窗口运行 ,安装后,可在python2.7文件夹下生成Scripts文件夹.把路径D:\Python27\Scripts

scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类

scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk

Linear Regression with Scikit Learn

Before you read ?This is a demo or practice about how to use Simple-Linear-Regression in scikit-learn with python. Following is the package version that I use below: The Python version: 3.6.2 The Numpy version: 1.8.0rc1 The Scikit-Learn version: 0.19

Scikit Learn安装教程

Windows下安装scikit-learn 准备工作 Python (>= 2.6 or >= 3.3), Numpy (>= 1.6.1) Scipy (>= 0.9), Matplotlib(可选). NumPy NumPy系统是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)). Scipy SciPy是一款方便.易于使用

Scikit Learn

安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=834b2904f92d46aaa333267fb1c922bb" --no-check-certificate# tar -xzvf pip-1.5.4.tar.gz# cd pip-1.5.4# python setup.py install 输入pip如果能看到信息证明安装成功. 安装scikit-learn

Spark技术在京东智能供应链预测的应用——按照业务进行划分,然后利用scikit learn进行单机训练并预测

3.3 Spark在预测核心层的应用 我们使用Spark SQL和Spark RDD相结合的方式来编写程序,对于一般的数据处理,我们使用Spark的方式与其他无异,但是对于模型训练.预测这些需要调用算法接口的逻辑就需要考虑一下并行化的问题了.我们平均一个训练任务在一天处理的数据量大约在500G左右,虽然数据规模不是特别的庞大,但是Python算法包提供的算法都是单进程执行.我们计算过,如果使用一台机器训练全部品类数据需要一个星期的时间,这是无法接收的,所以我们需要借助Spark这种分布式并行计算

机器学习-scikit learn学习笔记

scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习问题一般可以分为: 监督学习(supervised learning) 分类(classification) 回归(regression) 非监督学习(unsupervised learning) 聚类(clustering) 监督学习和非监督学习的区别就是,监督学习中,样本数据会包含要预测的标签(

【359】scikit learn 官方帮助文档

官方网站链接 KNN Home Installation Documentation Scikit-learn 0.20.2 (stable) Tutorials User guide API Glossary FAQ Contributing Roadmap Development version All available versions PDF documentation Examples Documentation of scikit-learn 0.20.2¶ Quick Start

6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python)

6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python) Introduction Here’s a situation you’ve got into: You are working on a classification problem and you have generated your set of hypothesis, created features and discussed the importanc