typing-python用于类型注解的库

简介

动态语言的灵活性使其在做一些工具,脚本时非常方便,但是同时也给大型项目的开发带来了一些麻烦。

自python3.5开始,PEP484为python引入了类型注解(type hints),虽然在pep3107定义了函数注释(function annotation)的语法,但仍然故意留下了一些未定义的行为.现在已经拥有许多对于静态类型的分析的第三方工具,而pep484引入了一个模块来提供这些工具,同时还规定一些不能使用注释(annoation)的情况

#一个典型的函数注释例子,为参数加上了类型
def greeting(name: str) -> str:
    return ‘Hello ‘ + name

伴随着python3.6的pep526则更进一步引入了对变量类型的声明,和在以前我们只能在注释中对变量的类型进行说明

# 使用注释来标明变量类型
primes = [] # type:list[int]
captain = ... #type:str

class Starship:
    stats = {} #type:Dict[str,int]
primes:List[int] = []
captain:str #Note: no initial value

class Starship:
    stats: ClassVar[Dict[str,int]] = {}

typing--对于type hints支持的标准库

typing模块已经被加入标准库的provisional basis中,新的特性可能会增加,如果开发者认为有必要,api也可能会发生改变,即不保证向后兼容性

我们已经在简介中介绍过类型注解,那么除了默认类型的int、str用于类型注解的类型有哪些呢?

typing库便是一个帮助我们实现类型注解的库

类型别名(type alias)

在下面这个例子中,Vector和List[float]可以视为同义词

from typing import List
Vector = List[float]

def scale(scalar: float, vector: Vector)->Vector:
    return [scalar*num for num in vector]

new_vector = scale(2.0, [1.0, -4.2, 5.4])

类型别名有助于简化一些复杂的类型声明

from typing import Dict, Tuple, List

ConnectionOptions = Dict[str, str]
Address = Tuple[str, int]
Server = Tuple[Address, ConnectionOptions]

def broadcast_message(message: str, servers: List[Server]) -> None:
    ...

# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
        message: str,
        servers: List[Tuple[Tuple[str, int], Dict[str, str]]]) -> None:
    pass

新类型(New Type)

使用NewType来辅助函数创造不同的类型

form typing import NewType

UserId = NewType("UserId", int)
some_id = UserId(524313)

静态类型检查器将将新类型视为原始类型的子类。这对于帮助捕获逻辑错误非常有用

def get_user_name(user_id: UserId) -> str:
    pass

# typechecks
user_a = get_user_name(UserId(42351))

# does not typecheck; an int is not a UserId
user_b = get_user_name(-1)

你仍然可以使用int类型变量的所有操作来使用UserId类型的变量,但结果返回的都是都是int类型。例如

# output仍然是int类型而不是UserId类型
output = UserId(23413) + UserId(54341)

虽然这无法阻止你使用int类型代替UserId类型,但可以避免你滥用UserId类型

注意,这些检查仅仅被静态检查器强制检查,在运行时Derived = NewType(‘Derived‘,base)将派生出一个函数直接返回你传的任何参数,这意味着Derived(some_value)并不会创建任何新类或者创建任何消耗大于普通函数调用消耗的函数

确切地说,这个表达式 some_value is Derived(some_value) 在运行时总是对的。

这也意味着不可能创建派生的子类型,因为它在运行时是一个标识函数,而不是一个实际类型:

from typing import NewType

UserId = NewType(‘UserId‘, int)

# Fails at runtime and does not typecheck
class AdminUserId(UserId): pass

然而,它可以创建一个新的类型基于衍生的NewType

from typing import NewType

UserId = NewType(‘UserId‘, int)

ProUserId = NewType(‘ProUserId‘, UserId)

然后对于ProUserId的类型检查会如预料般工作

Note:回想一下,使用类型别名声明的两个类型是完全一样的,令Doing = Original将会使静态类型检查时把Alias等同于Original,这个结论能够帮助你简化复杂的类型声明

与Alias不同,NewType声明了另一个的子类,令Derived = NewType(‘Derived‘, Original)将会使静态类型检查把Derived看做Original的子类,这意味着类型Original不能用于类型Derived,这有助于使用最小的消耗来防止逻辑错误。

回调(callable)

回调函数可以使用类似Callable[[Arg1Type, Arg2Type],ReturnType]的类型注释

例如

from typing import Callable

def feeder(get_next_item: Callable[[], str]) -> None:
    # Body

def async_query(on_success: Callable[[int], None],
                on_error: Callable[[int, Exception], None]) -> None:
    # Body

可以通过对类型提示中的参数列表替换一个文本省略号来声明一个可调用的返回类型,而不指定调用参数,例如 Callable[..., ReturnType]

泛型(Generics)

因为容器中的元素的类型信息由于泛型不同通过一般方式静态推断,因此抽象类被用来拓展表示容器中的元素

from typing import Mapping, Sequence

def notify_by_email(employees: Sequence[Employee],
                    overrides: Mapping[str, str]) -> None: ...

可以通过typing中的TypeVar将泛型参数化

from typing import Sequence, TypeVar

T = TypeVar(‘T‘)      # 申明类型变量

def first(l: Sequence[T]) -> T:   # Generic function
    return l[0]

用户定义泛型类型

from typing import TypeVar, Generic
from logging import Logger

T = TypeVar(‘T‘)

class LoggedVar(Generic[T]):
    def __init__(self, value: T, name: str, logger: Logger) -> None:
        self.name = name
        self.logger = logger
        self.value = value

    def set(self, new: T) -> None:
        self.log(‘Set ‘ + repr(self.value))
        self.value = new

    def get(self) -> T:
        self.log(‘Get ‘ + repr(self.value))
        return self.value

    def log(self, message: str) -> None:
        self.logger.info(‘%s: %s‘, self.name, message)

定义了Generic[T]作为LoggedVar的基类,同时T也作为了方法中的参数。

通过Generic基类使用元类(metaclass)定义__getitem__()使得LoggedVar[t]是有效类型

from typing import Iterable

def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
    for var in vars:
        var.set(0)

泛型可以是任意类型的变量,但也可以被约束

from typing import TypeVar, Generic
...

T = TypeVar(‘T‘)
S = TypeVar(‘S‘, int, str)

class StrangePair(Generic[T, S]):
    ...

每个类型变量的参数必须是不同的

下面是非法的

from typing import TypeVar, Generic
...

T = TypeVar(‘T‘)

class Pair(Generic[T, T]):   # INVALID
    ...

你可以使用Generic实现多继承

from typing import TypeVar, Generic, Sized

T = TypeVar(‘T‘)

class LinkedList(Sized, Generic[T]):
    ... 

当继承泛型类时,一些类型变量可以被固定

from typing import TypeVar, Mapping

T = TypeVar(‘T‘)

class MyDict(Mapping[str, T]):
    ...

使用泛型类而不指定类型参数则假定每个位置都是Any,。在下面的例子中,myiterable不是泛型但隐式继承Iterable [Any]

from typing import Iterable

class MyIterable(Iterable): # Same as Iterable[Any]

还支持用户定义的泛型类型别名。实例:

from typing import TypeVar, Iterable, Tuple, Union
S = TypeVar(‘S‘)
Response = Union[Iterable[S], int]

# Return type here is same as Union[Iterable[str], int]
def response(query: str) -> Response[str]:
    ...

T = TypeVar(‘T‘, int, float, complex)
Vec = Iterable[Tuple[T, T]]

def inproduct(v: Vec[T]) -> T: # Same as Iterable[Tuple[T, T]]
    return sum(x*y for x, y in v)

Generic的元类是abc.ABCMeta的子类,泛型类可以是包含抽象方法或属性的ABC类(A generic class can be an ABC by including abstract methods or properties)

同时泛型类也可以含有ABC类的方法而没有元类冲突。

Any

一种特殊的类型是。静态类型检查器将将每个类型视为与任何类型和任何类型兼容,与每个类型兼容。

from typing import Any

a = None    # type: Any
a = []      # OK
a = 2       # OK

s = ‘‘      # type: str
s = a       # OK

def foo(item: Any) -> int:
    # Typechecks; ‘item‘ could be any type,
    # and that type might have a ‘bar‘ method
    item.bar()
    ...

原文地址:https://www.cnblogs.com/ExMan/p/11732051.html

时间: 2024-07-31 12:35:30

typing-python用于类型注解的库的相关文章

python数字类型之math库使用

首先我们应当了解什么是math库: math库是python提供的内置数学类函数库,math库不支持复数类型,仅支持整数和浮点数运算.math库一共提供了4个数字常数和44个函数.44个函数共分为4类,包括16个数值表示函数,8个幂对数函数,16个三角对数函数和4个高等特殊函数. # 有一点需要注意:math库中的函数不能直接使用,需要先使用保留字import引用该库.如下: (1) import math                                            

?Python 3 新特性:类型注解——类似注释吧,反正解释器又不做校验

?Python 3 新特性:类型注解 Crossin ? 上海交通大学 计算机应用技术硕士 95 人赞同了该文章 前几天有同学问到,这个写法是什么意思: def add(x:int, y:int) -> int: return x + y 我们知道 Python 是一种动态语言,变量以及函数的参数是不区分类型.因此我们定义函数只需要这样写就可以了: def add(x, y): return x + y 这样的好处是有极大的灵活性,但坏处就是对于别人代码,无法一眼判断出参数的类型,IDE 也无法

python类型注解

function annotation 写法: 使用冒号 : 加类型代表参数类型 默认值参数示例:b: int = 2 使用 -> 加类型代表返回值类型 python解释器运行时并不会检查类型,类型不对也不会抛异常,仅仅是注解而已.示例: def plus(a: int, b: int = 2) -> int: return a + b python 解析器并不会在意类型注解,严格来说这是不对的,Python 会把类型信息放在 __annotations__ 属性中: >>>

python 类型注解

函数定义的弊端 python 是动态语言,变量随时可以被赋值,且能赋值为不同类型 python 不是静态编译型语言,变量类型是在运行器决定的 动态语言很灵活,但是这种特性也是弊端 def add(x,y): return x+y print(add(4,5)) print(add('hello','world')) print(add(4,'hello')) #报错,TypeError: unsupported operand type(s) for +: 'int' and 'str' 难发现

Python类型注解(inspect模块)

函数定义的弊端 Python是动态语言,变量随时可以被赋值,且能赋值为不同的类型,同时Python不是静态编译型语言,变量类型是在运行器决定的,动态语言很灵活,但是这种特性也是弊端. def add(x, y): return x + y print(add(4, 5)) print(add('hello', 'world')) add(4, 'hello') # 结果为: 9 helloworld ------------------------------------------------

Python第三方常用工具、库、框架等

Python ImagingLibrary(PIL):它提供强大的图形处理的能力,并提供广泛的图形文件格式支持,该库能进行图形格式的转换.打印和显示.还能进行一些图形效果的处理,如图形的放大.缩小和旋转等.是用户进行图象处理的强有力工具. http://www.pythonware.com/products/pil/ matplotlib:一个Python的2D绘图库. http://matplotlib.org/ Pmw(Pythonmegawidgets):它是超级GUI组件集----一个利

量化投资策略:常见的几种Python回测框架(库)

量化投资策略:常见的几种Python回测框架(库) 原文地址:http://blog.csdn.net/lawme/article/details/51454237 本文章为转载文章.这段时间在研究量化策略方向,研究了Zipline一段时间,但是后续发现他仅支持美国股票,收集量化策略文章,转载到博客中. 在实盘交易之前,必须对量化交易策略进行回测.在此,我们评价一下常用的Python回测框架(库).评价的尺度包括用途范围(回测.虚盘交易.实盘交易),易用程度(结构良好.文档完整)和扩展性(速度快

Python 变量类型day03

变量赋值 Python中的变量不需要声明,变量的赋值操作既是变量声明和定义的过程. 每个变量在内存中创建,都包括变量的标识,名称和数据这些信息. 每个变量在使用前都必须赋值,变量赋值以后该变量才会被创建. 等号(=)用来给变量赋值. 等号(=)运算符左边是一个变量名,等号(=)运算符右边是存储在变量中的值.例如: #!/usr/bin/python counter = 100 # An integer assignment miles = 1000.0 # A floating point na

Python 二、Python对象类型及其运算

一.Python对象的相关术语 Python中一切皆对象,python程序中保存的所有数据都是围绕对象这个概念展开的:所有的对象都是由类实例化而来的,只不过这些类有些是python内置的类:例如,整数和浮点数,字符串都是由python内置的类实例化而来的.除此之外用户还可以自定义类型,就是类. python程序中存储的所有数据都是对象 每个对象都有一个身份.一个类型和一个值 例如,school="MaGe Linux"会以"MaGe Linux"创建一个字符串对象,