luogu P2604 [ZJOI2010]网络扩容 |费用流

题目描述

给定一张有向图,每条边都有一个容量\(C\)和一个扩容费用\(W\)。这里扩容费用是指将容量扩大1所需的费用。求: 1、 在不扩容的情况下,1到N的最大流; 2、 将1到N的最大流增加K所需的最小扩容费用。

输入格式

输入文件的第一行包含三个整数\(N,M,K\),表示有向图的点数、边数以及所需要增加的流量。 接下来的M行每行包含四个整数\(u,v,C,W\),表示一条从u到v,容量为C,扩容费用为W的边。

输出格式

输出文件一行包含两个整数,分别表示问题1和问题2的答案。



利用残余网络,建边add(u,v,inf,c),把原图边权删掉

连边add(s,1,k,0)强制增加的流量为k

跑费用流

#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e4+10,M=2e5+10,inf=0x3f3f3f3f;
int n,m,s,t;
int nxt[M],head[N],go[M],edge[M],cost[M],tot=1;
inline void add(int u,int v,int o1,int o2){
    nxt[++tot]=head[u],head[u]=tot,go[tot]=v,edge[tot]=o1,cost[tot]=o2;
    nxt[++tot]=head[v],head[v]=tot,go[tot]=u,edge[tot]=0,cost[tot]=-o2;
}
int dis[N],ret;
bool vis[N];
inline bool spfa(){
    memset(dis,0x3f,sizeof(dis));
    queue<int>q; q.push(s),dis[s]=0,vis[s]=1;
    while(q.size()){
        int u=q.front(); q.pop(); vis[u]=0;
        for(int i=head[u];i;i=nxt[i]){
            int v=go[i];
            if(edge[i]&&dis[v]>dis[u]+cost[i]){
                dis[v]=dis[u]+cost[i];
                if(!vis[v])q.push(v),vis[v]=1;
            }
        }
    }
    return dis[t]!=inf;
}
int dinic(int u,int flow){
    if(u==t)return flow;
    vis[u]=1;
    int rest=flow,k;
    for(int i=head[u];i&&rest;i=nxt[i]){
        int v=go[i];
        if(!vis[v]&&edge[i]&&dis[v]==dis[u]+cost[i]){
            k=dinic(v,min(edge[i],rest));
            if(k)ret+=k*cost[i],edge[i]-=k,edge[i^1]+=k,rest-=k;
            else dis[v]=-1;
        }
    }
    vis[u]=0;
    return flow-rest;
}
int k;
struct node{
    int u,v,o1,o2;
}e[M];
signed main(){
    scanf("%d%d%d", &n, &m, &k);
    for(int i=1,u,v,w,c;i<=m;i++){
        scanf("%d%d%d%d", &u, &v, &w, &c);
        e[i]=(node){u,v,w,c};
        add(u,v,w,c);
    }
    s=1,t=n;
    int flow=0,maxflow=0;
    while(spfa())
    while(flow=dinic(s,inf))maxflow+=flow;
    cout<<maxflow<<' ';
    memset(cost,0,sizeof(cost));
    s=0; add(s,1,k,0);
    for(int i=1;i<=m;i++)add(e[i].u,e[i].v,inf,e[i].o2);
    ret=flow=maxflow=0;
    while(spfa())
    while(flow=dinic(s,inf))maxflow+=flow;
    cout<<ret<<endl;
}

原文地址:https://www.cnblogs.com/naruto-mzx/p/12208462.html

时间: 2024-10-06 10:22:19

luogu P2604 [ZJOI2010]网络扩容 |费用流的相关文章

[ZJOI2010][bzoj1834] 网络扩容 [费用流]

题面 传送门 思路 第一问:无脑网络流跑一波 第二问: 先考虑一个贪心的结论:扩容出来的扩容流量一定要跑满 证明显然 因此我们可以把扩容费用可以换个角度思考,变成增加一点流量,花费W的费用 这样,我们就得到了一个最小费用流的模型 只要在原图基础上,对于每个原图边,加一条费用为W,无限容量的边,而原图中的所有边费用为0,就可以模拟原题需要的情况了 最后一个问题:流量增加限制K怎么处理? 我们虽然可以用spfa的费用流,一次一次增加,直到K,但是这样也太慢chou了吧? 不怕,我们加一个n+1号点,

[ZJOI2010]网络扩容 (最大流 + 费用流)

题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. 输入输出格式 输入格式: 输入文件的第一行包含三个整数N,M,K,表示有向图的点数.边数以及所需要增加的流量. 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边. 输出格式: 输出文件一行包含两个整数,分别表示问题1和问题2的答案. 输入输出样例 输入样例#

洛谷 P2604 [ZJOI2010]网络扩容

题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. 输入输出格式 输入格式: 输入文件的第一行包含三个整数N,M,K,表示有向图的点数.边数以及所需要增加的流量. 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边. 输出格式: 输出文件一行包含两个整数,分别表示问题1和问题2的答案. 输入输出样例 输入样例#

p2604 [ZJOI2010]网络扩容

传送门 分析 第一问就是最大流 第二问用一个源点向1连一条流量为第一问答案+k的边然后跑费用流即可 代码 #include<iostream> #include<cstdio> #include<cstring> #include<string> #include<algorithm> #include<cctype> #include<cmath> #include<cstdlib> #include<

Luogu P4068 [SDOI2016]数字配对(费用流)

Luogu P4068 [SDOI2016]数字配对(费用流) 根据质因子个数奇偶性划分肯定会形成一张二分图. 把所有的\(a\)分解质因数,记录其质因子个数. \(a_i \% a_j == 0\)且\(a_i\)的质因子比\(a_j\)质因子个数多1的时候,我们连边. 解决这个题目的关键是求出费用\(>0\)的时候的最大的流量. 我们要跑最大费用最大流,(具体实现是把边权取反) 这样在每一次的增广过程中,我们都可以保证费用最大且满足流最多. 但是写法有异议,待填坑. 原文地址:https:/

bzoj 1834: [ZJOI2010]network 网络扩容 -- 最大流+费用流

1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. Input 输入文件的第一行包含三个整数N,M,K,表示有向图的点数.边数以及所需要增加的流量. 接下来的M行每行包含四个整数u,v,C,W,表示一

bzoj1834 ZJOI2010网络扩容(费用流)

给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小扩容费用. 其中\(n \le 1000,m \le 5000,k \le 10\) 网络流题,复杂度都是没用的了.... 第一问就是一个裸的最大流 现在我们考虑第二问QwQ 最小扩容费用,我们是不是可以对于原图中的\(u->v\)的边,添加一条\(u->v\),流量为\(inf\),费用为\(w\)的边,这样就可以实

【bzoj1834】[ZJOI2010]network 网络扩容 最大流+最小费用流

题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. 输入 输入文件的第一行包含三个整数N,M,K,表示有向图的点数.边数以及所需要增加的流量. 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边. 输出 输出文件一行包含两个整数,分别表示问题1和问题2的答案. 样例输入 5 8 2 1 2 5 8 2 5 9

[zjoi2010]网络扩容

描述 Description  给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. 输入格式 Input Format 输入文件的第一行包含三个整数N,M,K,表示有向图的点数.边数以及所需要增加的流量. 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边. 输出格式 Output Format 输出文件一行包含两个整数