#计算机并不能真正产生随机数 #若想程序复现,可以使用随机种子,否则,默认采用第一次调用随机库时的系统时间作为随机种子. 1.最简单用法 #随机产生0-1的小数,包括0和1 import random as r for i in range(20): a = r.random() print(a) 2.拓展用法 import random as r r.seed(10) #加上这一句会发现每次运行产生的随机数相同,数值是任意的 a = r.randint(1,10) #产生1到10的整数,包括1
1.random库的使用: random库是使用随机数的Python标准库从概率论角度来说,随机数是随机产生的数据(比如抛硬币),但时计算机是不可能产生随机值,真正的随机数也是在特定条件下产生的确定值,只不过这些条件我们没有理解,或者超出了我们的理解范围.计算机不能产生真正的随机数,那么伪随机数也就被称为随机数--伪随机数:计算机中通过采用梅森旋转算法生成的(伪)随机序列元素python中用于生成伪随机数的函数库是random因为是标准库,使用时候只需要import random random库
继上一篇介绍了python的多线程和基本用法.也说到了python中多线程中的同步锁,这篇就来看看python中的多线程同步问题. 有时候很多个线程同时对一个资源进行修改,这个时候就容易发生错误,看看这个最简单的程序: import thread, time count = 0 def addCount(): global count for i in range(100000): count += 1 for i in range(10): thread.start_new_thread(ad
1 操作系统接口 os 模块提供了一系列与系统交互的模块: >>> os.getcwd() # Return the current working directory '/home/minix/Documents/Note/Programming/python/lib1' >>> os.chdir('~/python') # Change current working directory Traceback (most recent call last): File