CIFAR-10和CIFAR-100均是带有标签的数据集,都出自于规模更大的一个数据集,他有八千万张小图片。而本次实验采用CIFAR-10数据集,该数据集共有60000张彩色图像,这些图像是32*32,分为10个类,每类6000张图。这里面有50000张用于训练,构成了5个训练批,每一批10000张图;另外10000用于测试,单独构成一批。测试批的数据里,取自10类中的每一类,每一类随机取1000张。抽剩下的就随机排列组成了训练批。注意一个训练批中的各类图像并不一定数量相同,总的来看训练批,每一类都有5000张图。
下面这幅图就是列举了10各类,每一类展示了随机的10张图片:
我的数据集一共有三个文件,分别是训练集train_data,测试集test_data以及标签名称labels_name,而标签名称中共有5个类,‘airplane‘, ‘automobile‘, ‘bird‘, ‘cat‘, ‘deer’.我现在准备对前三类‘airplane‘, ’automobile‘, ’bird‘,(即标签为1, 2, 3的数据 )进行分类。
经过之前大量测试,得到在累计方差贡献率为0.79时,基于最小错误率的贝叶斯决策用于图像分类最佳,以下为代码:
#CIFAR-10数据集:包含60000个32*32的彩色图像,共10类,每类6000个彩色图像。有50000个训练图像和10000个测试图像。 import scipy.io train_data=scipy.io.loadmat("F:\\模式识别\\最小错误率的贝叶斯决策进行图像分类\\data\\train_data.mat") print (type(train_data)) print (train_data.keys()) print (train_data.values()) print (len(train_data[‘Data‘])) #单张图片的数据向量长度:32X32X3=3072 #内存占用量=3072*4*9968=116M 假定一个整数占用4个字节 print (len(train_data[‘Data‘][0])) print (train_data) x = train_data[‘Data‘] y = train_data[‘Label‘] print (y) print (len(y)) print (y.shape) print (y.flatten().shape) #labels_name:共5个标签,分别为airplane、automobile、bird、cat、deer import scipy.io labels_name=scipy.io.loadmat("F:\\模式识别\\最小错误率的贝叶斯决策进行图像分类\\data\\labels_name.mat") print (type(labels_name)) print (labels_name) print (len(labels_name)) #test_data:共5000个图像,5类,每类1000个图像 import scipy.io test_data=scipy.io.loadmat("F:\\模式识别\\最小错误率的贝叶斯决策进行图像分类\\data\\test_data.mat") print (test_data[‘Label‘]) print (test_data[‘Data‘]) print (len(test_data[‘Label‘])) datatest = test_data[‘Data‘] labeltest = test_data[‘Label‘] print (datatest.shape) print (labeltest.shape) test_index=[] for i in range(len(labeltest)): if labeltest[i]==1: test_index.append(i) elif labeltest[i]==2: test_index.append(i) elif labeltest[i]==3: test_index.append(i) #print (test_index) labeltest=test_data[‘Label‘][:3000] #print (labeltest) import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D print (x) print (x.shape) print (type(x)) from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.decomposition import PCA pca=PCA(n_components=0.79) #训练模型 pca.fit(x) x_new=pca.transform(x) print("降维后各主成分的累计方差贡献率:",pca.explained_variance_ratio_) print("降维后主成分的个数:",pca.n_components_) print (x_new) index_1=[] index_2=[] index_3=[] index_num=[] for i in range(len(y)): if y[i]==1: index_1.append(i) elif y[i]==2: index_2.append(i) elif y[i]==3: index_3.append(i) index_num=[len(index_1),len(index_2),len(index_3)] print(len(index_1)) print(len(index_2)) print(len(index_3)) print (index_num) import numpy as np class1_feature=[] class2_feature=[] class3_feature=[] #index_1 for i in index_1: class1_feature.append(x_new[i]) print (len(class1_feature)) for i in index_2: class2_feature.append(x_new[i]) print (len(class2_feature)) for i in index_3: class3_feature.append(x_new[i]) print (len(class3_feature)) #计算第一类的类条件概率密度函数的参数 class1_feature=np.mat(class1_feature) print (class1_feature.shape) miu1=[] sigma1=[] for i in range(30): miu=class1_feature[:,i].sum()/len(index_1) miu1.append(miu) temp=class1_feature[:,i]-miu class1_feature[:,i]=temp sigma1=(class1_feature.T*class1_feature)/len(index_1) print (miu1) print (sigma1) print (sigma1.shape) #计算第二类类条件概率密度函数的参数 class2_feature=np.mat(class2_feature) miu2=[] sigma2=[] for i in range(30): miu=class2_feature[:,i].sum()/len(index_2) miu2.append(miu) temp=class2_feature[:,i]-miu class2_feature[:,i]=temp sigma2=(class2_feature.T*class2_feature)/len(index_2) print (miu2) print (sigma2) print (sigma2.shape) #计算第三类类条件概率密度函数的参数 class3_feature=np.mat(class3_feature) miu3=[] sigma3=[] for i in range(30): miu=class3_feature[:,i].sum()/len(index_3) miu3.append(miu) temp=class3_feature[:,i]-miu class3_feature[:,i]=temp sigma3=(class3_feature.T*class3_feature)/len(index_3) print (miu3) print (sigma3) print (sigma3.shape) #计算三个类别的先验概率: prior_index1=len(index_1)/len(y) prior_index2=len(index_2)/len(y) prior_index3=len(index_3)/len(y) print (prior_index1) print (prior_index2) print (prior_index3) import math #降维 x_test = pca.transform(datatest) print (x_test) print (x_test.shape) print (x_test[0]) #print ((np.mat(x_test[0]-miu1))*sigma1.I*(np.mat(x_test[0]-miu1).T)) #print (((np.mat(x_test[0]-miu1))*sigma1.I*(np.mat(x_test[0]-miu1).T))[0,0]) predict_label=[] for i in range(3000): g1=-0.5*((np.mat(x_test[i]-miu1))*sigma1.I*(np.mat(x_test[i]-miu1).T))[0,0]-0.5*math.log(np.linalg.det(sigma1))+math.log(prior_index1) g2=-0.5*((np.mat(x_test[i]-miu2))*sigma2.I*(np.mat(x_test[i]-miu2).T))[0,0]-0.5*math.log(np.linalg.det(sigma2))+math.log(prior_index2) g3=-0.5*((np.mat(x_test[i]-miu3))*sigma3.I*(np.mat(x_test[i]-miu3).T))[0,0]-0.5*math.log(np.linalg.det(sigma3))+math.log(prior_index3) if g1>g2: max=1 if g1>g3: max=1 else: max=3 else: max=2 if g2>g3: max=2 else: max=3 predict_label.append(max) from sklearn.metrics import accuracy_score print (accuracy_score(predict_label,labeltest))
可以看到分类结果的准确率高达73%,这一数值在贝叶斯决策用于图像分类中已经是极值了。
原文地址:https://www.cnblogs.com/klausage/p/11790294.html
时间: 2024-10-08 14:36:06