ZOJ1002 —— 深度优先搜索

ZOJ1002 —— Fire net

Time Limit: 2000 ms

Memory Limit: 65536 KB

Suppose that we have a square city with straight streets. A map of a city is a square board with n rows and n columns, each representing a street or a piece of wall.

A blockhouse is a small castle that has four openings through which to shoot. The four openings are facing North, East, South, and West, respectively. There will be one machine gun shooting through each opening.

Here we assume that a bullet is so powerful that it can run across any distance and destroy a blockhouse on its way. On the other hand, a wall is so strongly built that can stop the bullets.

The goal is to place as many blockhouses in a city as possible so that no two can destroy each other. A configuration of blockhouses is legal provided that no two blockhouses are on the same horizontal row or vertical column in a map unless there is at least one wall separating them. In this problem we will consider small square cities (at most 4x4) that contain walls through which bullets cannot run through.

The following image shows five pictures of the same board. The first picture is the empty board, the second and third pictures show legal configurations, and the fourth and fifth pictures show illegal configurations. For this board, the maximum number of blockhouses in a legal configuration is 5; the second picture shows one way to do it, but there are several other ways.

Your task is to write a program that, given a description of a map, calculates the maximum number of blockhouses that can be placed in the city in a legal configuration.

The input file contains one or more map descriptions, followed by a line containing the number 0 that signals the end of the file. Each map description begins with a line containing a positive integer n that is the size of the city; n will be at most 4. The next n lines each describe one row of the map, with a ‘.‘ indicating an open space and an uppercase ‘X‘ indicating a wall. There are no spaces in the input file.

For each test case, output one line containing the maximum number of blockhouses that can be placed in the city in a legal configuration.

Sample input:

4
.X..
....
XX..
....
2
XX
.X
3
.X.
X.X
.X.
3
...
.XX
.XX
4
....
....
....
....
0

Sample output:

5
1
5
2
4

题目中译:

有n×n个格子,每个格子是堡垒或城墙或空地。

你原来知道哪里有城墙或空地。

堡垒会向东西南北四方向发射炮弹,城墙能阻挡炮弹。

问最多能放几个堡垒。

题目思维:

1.我们遍历每个格子,能放就放,并且将放完后与它有冲突的格子进行标记,最后输出。

可惜如果这样做不到最大优化。

2.我们仍然深度优先搜索每个格子,这次如果没有打过标记,则将格子标记0或1,如果标记过则只标记0,继续向下遍历,最后填满后更新最大值。

注意没打过表记的格子,打完标记要还原。

Code:

// by kyrence
#include <bits/stdc++.h>
using namespace std;

int n, ans;
bool can[10][10];
char c; 

bool valid(int x, int y) {
    return x > 0 && y > 0 && x <= n && y <= n;
}

void FW(int x, int y, int dx, int dy) {
    do {
        can[x][y] = 0;
        x += dx;
        y += dy;
    } while (valid(x, y) && can[x][y]);
}

void dfs(int dep, int tot) {
    if (dep > n * n) {
        ans = max(tot, ans);
        return;
    }
    dfs(dep + 1, tot);
    int x = (dep + n - 1) / n;
    int y = dep % n;
    if (!y) y = n;
    if (!can[x][y]) return;
    bool cam[5][5];
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            cam[i][j] = can[i][j];
    FW(x, y, 1, 0);
    FW(x, y, -1, 0);
    FW(x, y, 0, 1);
    FW(x, y, 0, -1);
    dfs(dep + 1, tot + 1);
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            can[i][j] = cam[i][j];
}

int main() {
    while (scanf("%d", &n) == 1 && n) {
        ans = -1;
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++) {
                cin >> c;
                can[i][j] = (c == ‘.‘);
            }
        dfs(1, 0);
        printf("%d\n", ans);
    }
    return 0;
}

std

原文地址:https://www.cnblogs.com/persadamyasfro/p/12235716.html

时间: 2024-10-09 01:23:12

ZOJ1002 —— 深度优先搜索的相关文章

深度优先搜索与广度优先搜索算法理解

深度优先搜索算法和广度优先搜索算法是图论中两个有意思也很实用的算法,下面我们来看看这两个算法. 严书中,给出的利用深度优先搜索(Deep First Search)算法进行图的遍历伪码如下 1 Boolean visited[MAX]; //标志数组 2 Status (*VisitFunction)(int v); //访问函数 3 4 void DFSTraverse(Graph G, Status (*Visit)(int v)) 5 { 6 VisitFunction = Visit;

图论 深度优先搜索 广度优先搜索的非递归实现

深度优先遍历 1.深度优先遍历的递归定义 假设给定图G的初态是所有顶点均未曾访问过.在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过:然后依次从v出发搜索v的每个邻接点w.若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止.若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止. 图的深度优先遍历类似于树的

深度优先搜索

在图中的深度优先搜索,由于避免回路的产生,设置visit数组. 有两种深度优先的应用场景.一种是用于最优解的寻找,即到达目的地的最优解.这时需要设置全局的一个数组,还有变量,来储存路径.通过与别的方法的比较,获取最优解. 第二种是染色问题,只要求全部遍历,没有最优的要求. 还有哈希的用法.当需要记录拥有共同数字特征的一些属性时,就可以使用哈希数组.使用时按照属性的含义寻找.如二叉树某层的数量.

深度优先搜索(dfs)

关于深度优先搜索的总结: 1 dfs 的基本结构:  void dfs(int x){ if( x 超出边界){ return ; }else{ for(遍历){ if(未访问过){ 访问         ; 打上标记    ; dfs(x + 1) ; 去掉标记    ; //极易忘记 } } } return; } 2 用dfs求全排列: 本来好好的,结果sizeof(pointer) 就完蛋了.神秘的内存错误,而且还能正常的跑出一个不正常的结果出来. 想了解sizeof这个小妖精的看这里

深度优先搜索思想初体验

1.求数字 1~n 的全排列 import java.util.Scanner ; public class Permutation{ //求数字 1~n 的全排列: int[] array ; int[] book ; int n ; public void permutation(int step){ // 深度优先搜索思想: if (step==n+1) { for (int i=1;i<=n;i++) { System.out.print(array[i] + " ")

深度优先搜索(DFS)

定义: (维基百科:https://en.wikipedia.org/wiki/Depth-first_search) 深度优先搜索算法(Depth-First-Search),是搜索算法的一种.是沿着树的深度遍历树的节点,尽可能深的搜索树的分支.当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点.这一过程一直进行到已发现从源节点可达的所有节点为止.如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止(属于盲目搜索). 基

图的遍历之深度优先搜索(DFS)

深度优先搜索(depth-first search)是对先序遍历(preorder traversal)的推广.”深度优先搜索“,顾名思义就是尽可能深的搜索一个图.想象你是身处一个迷宫的入口,迷宫中的路每一个拐点有一盏灯是亮着的,你的任务是将所有灯熄灭,按照DFS的做法如下: 1. 熄灭你当前所在的拐点的灯 2. 任选一条路向前(深处)走,每经过一个拐点将灯熄灭直到与之相邻的拐点的灯全部熄灭后,原路返回到某个拐点的相邻拐点灯是亮着的,走到灯亮的拐点,重复执行步骤1 3. 当所有灯熄灭时,结束 将

图算法系列-深度优先搜索与广度优先搜索

2.深度优先搜索 为了访问一个顶点,我们将它标记为已经访问过,然后递归的访问所有与子邻接的并且尚未标记的顶点,这就是深度优先搜索(DFS),DFS常用于解决路径问题. 比如下面的连通图,我们从顶点0开始对图进行探索 下面这个图显示了DFS处理时的递归调用树. DFS可以解决的问题:1)环检测:一个图中有环吗?该图是森林吗?2)简单路径:给定两个顶点,是否存在一条连接他们的路径3)简单连通性:无论何时使用DFS,都可以在线性时间内确定一个图是否连通4)顶点搜索:在给定顶点所在的同一个连通分量中有多

[ACM] 1016 Prime Ring Problem (深度优先搜索)

Prime Ring Problem Problem Description A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime. Note: the number of first circle