前面介绍的Stack是新进后出,而Queue是先进先出的
1、Queue结构
public interface Queue<E> extends Collection<E> { boolean add(E e); boolean offer(E e); E remove(); E poll(); E element(); E peek(); }
Queue是一个接口。
2、PriorityQueue源码分析
PriorityQueue是一个优先队列,和先进先出的队列的区别是: 优先队列每次出队的元素都是优先级最高的元素。 如何确定哪一个元素的优先级呢? jdk中使用堆这种数据结构,通过堆使得每次出队的元素总是队列里最小的,而元素大小的比较可以通过Compareator指定,相当于优先级。
3、什么是堆和二叉堆?
1) 堆中某个节点的值总是不大于或者不小于其父节点的值
2) 堆总是一颗完全树
场景的堆有二叉堆、斐波那契堆等。而PriorityQueue是二叉堆。
二叉堆是一种特殊的堆,二叉堆是完全二叉树或者近似完全二叉树。二叉堆有两种:最大堆和最小堆
最大堆: 父节点的键值总是大于或等于任何一个子节点的键值
最小堆:父节点的键值总是小于或者等于任何一个子节点的键值
二叉堆图例
上图是一颗完全二叉树(二叉堆),特点是: 在第n层深度被填满之前,不会开始填第n+1层深度,而且元素插入是从左往右填满。
基于这个特点,二叉堆又可以用数组来表示而不是用链表。我们看一下下图用数组表示二叉堆
基于数组实现的二叉堆,对于数组中任意元素的n上元素,其左孩子在2n+1位置上,右孩子在2n+2位置上,它的父节点在(n-1)/2上,而根节点是0的位置上。
4、PriorityQueue的数据结构,就是堆
public class PriorityQueue<E> extends AbstractQueue<E> implements java.io.Serializable { // 默认容量是11 private static final int DEFAULT_INITIAL_CAPACITY = 11; //使用数组来存储元素 transient Object[] queue; // non-private to simplify nested class access //队列元素大小 private int size = 0; //通过这个比较器实现优先级队列 private final Comparator<? super E> comparator; }
5、构造函数
我们看主要的构造函数
public PriorityQueue(int initialCapacity, Comparator<? super E> comparator) { if (initialCapacity < 1) throw new IllegalArgumentException(); this.queue = new Object[initialCapacity]; this.comparator = comparator; }
6、二叉堆的添加原理
二叉堆的特点:
1)父结点的键值总是小于或等于任何一个子节点的键值。
2)基于数组实现的二叉堆,对于数组中任意元素的n上元素,其左孩子在2n+1位置上,右孩子在2n+2位置上,它的父节点在(n-1)/2上,而根节点是0的位置上。
为了维护这个特点,二叉堆在添加元素的时候,需要一个“上移”的动作,如下图所示
7、添加元素源码解析
//添加一个元素 public boolean add(E e) { return offer(e); } public boolean offer(E e) { if (e == null) throw new NullPointerException(); //修改版本+1 modCount++; //记录当前队列元素的个数 int i = size; //如果当前元素个数大于等于队列底层数组的长度,则进行扩容 if (i >= queue.length) grow(i + 1); //元素个数+1 size = i + 1; //如果队列中没有元素,则将元素e直接添加到根 if (i == 0) queue[0] = e; //否则调用siftUp方法,将元素添加到尾部,进行上移判断 else siftUp(i, e); return true; }
1) 扩容操作
private void grow(int minCapacity) { int oldCapacity = queue.length; // 如果当前队列小于64,则扩容到2倍,否则扩容到1.5倍 int newCapacity = oldCapacity + ((oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1)); // 如果扩容后超出了int范围,则将newCapacity赋值为Integer.Max_VALUE if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); //数组copy进行扩容 queue = Arrays.copyOf(queue, newCapacity); }
2)上移操作
//上移,x表示新插入元素,k表示新插入元素在数组中的位置 private void siftUp(int k, E x) { //根据比较器是否为空,选择不同的上移操作方法 if (comparator != null) siftUpUsingComparator(k, x); else siftUpComparable(k, x); } //比较器为空时,调用此方法进行上移操作 private void siftUpComparable(int k, E x) { Comparable<? super E> key = (Comparable<? super E>) x; //k>0表示判断k不是根的情况下,也就是元素x有父节点。 while (k > 0) { //计算元素x的父节点位置(n-1)/2 int parent = (k - 1) >>> 1; //取出x的父元素e Object e = queue[parent]; //如果新增的元素k比其父元素e大,则不需要“上移”,跳出循环结束 if (key.compareTo((E) e) >= 0) break; //x比父元素小,则需要进行“上移” //交换元素x和父节点e的位置 queue[k] = e; //将新插入元素位置k指向父节点位置,进行下一次循环 k = parent; } //找到新增元素x的合适位置k之后进行赋值 queue[k] = key; }
总结: 二叉堆“上移”操作主要是不断的将新增的元素和父元素进行比较,比父节点小则上移。上移后再和父节点进行比较,直到根节点。
8、二叉堆删除原理
对应二叉堆出队操作,就是删除根元素,也就是最小的元素,找一个替代者移动到根位置,向对于被删除的元素来说就是“下移”
结合上面的图解,我们来说明一下二叉堆的出队过程:
1. 将找出队尾的元素8,并将它在队尾位置上删除(图2);
2. 此时队尾元素8比根元素1的最小孩子3要大,所以将元素1下移,交换1和3的位置(图3);
3. 然后此时队尾元素8比元素1的最小孩子4要大,继续将1下移,交换1和4的位置(图4);
4. 然后此时根元素8比元素1的最小孩子9要小,不需要下移,直接将根元素8赋值给此时元素1的位置,1被覆盖则相当于删除(图5),结束。
参考:https://www.cnblogs.com/linghu-java/p/9467805.html
原文地址:https://www.cnblogs.com/linlf03/p/12634297.html