redis数据库的缓存击穿和缓存穿透

缓存穿透

缓存穿透是指查询一个一定不存在的数据,由于缓存不命中,接着查询数据库也无法查询出结果,因此也不会写入到缓存中,这将会导致每个查询都会去请求数据库,造成缓存穿透;

缓存雪崩

缓存雪崩是指,由于缓存层承载着大量请求,有效的保护了存储层,但是如果缓存层由于某些原因整体不能提供服务,于是所有的请求都会达到存储层,存储层的调用量会暴增,造成存储层也会挂掉的情况。

缓存并发

缓存并发是指,高并发场景下同时大量查询过期的key值、最后查询数据库将缓存结果回写到缓存、造成数据库压力过大

参考:https://www.cnblogs.com/George1994/p/10668889.html

原文地址:https://www.cnblogs.com/nyhhd/p/12702274.html

时间: 2024-12-15 00:22:56

redis数据库的缓存击穿和缓存穿透的相关文章

redis缓存穿透,缓存击穿,缓存雪崩原因+解决方案

###一.前言在我们日常的开发中,无不都是使用数据库来进行数据的存储,由于一般的系统任务中通常不会存在高并发的情况,所以这样看起来并没有什么问题,可是一旦涉及大数据量的需求,比如一些商品抢购的情景,或者是主页访问量瞬间较大的时候,单一使用数据库来保存数据的系统会因为面向磁盘,磁盘读/写速度比较慢的问题而存在严重的性能弊端,一瞬间成千上万的请求到来,需要系统在极短的时间内完成成千上万次的读/写操作,这个时候往往不是数据库能够承受的,极其容易造成数据库系统瘫痪,最终导致服务宕机的严重生产问题. 为了

缓存击穿、缓存穿透和缓存雪崩

缓存击穿 定义: 缓存中的key一般设有过期时间,如果某个key过期了,恰在这个时候,有大量的并发请求访问这个key,则这些请求都会到达DB,导致DB瞬间压力过大,压垮DB. 解决方案: 1.设置互斥锁,mutex.当缓存失效时不时立即去访问数据库,而是使用缓存工具的操作成功带返回值的操作,比如redis的setnx(set if not exit),memcache的add,利用setnx实现锁的效果. 缺点:可能造成死锁,或线程池阻塞 2.提前使用互斥锁 redist的超时时间是timeou

缓存击穿、缓存穿透、缓存雪崩

参考文章:缓存穿透.缓存击穿.缓存雪崩概念及解决方案 一. 缓存击穿 1. 概念 缓存击穿指的是高并发情况下在缓存中查询时该资源不存在,导致缓存无法命中,所有请求击穿到后端数据库系统进行查询,使数据库压力过大,甚至使数据库服务被压死. 2. 解决方案 直接加锁:当缓存未命中,则从数据库获取数据并更新到缓存中: 定时任务:定时刷新缓存: 多级缓存:一级缓存失效时间短,二级缓存失效时间长,一级缓存未命中时对 key 加锁,从数据库获取到数据更新到缓存并释放锁,后面线程从二级缓存获取数据: 二. 缓存

redis缓存穿透、缓存击穿、缓存雪崩

缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透. 解决办法: 预校验 在控制层对查询参数先进行校验,不符合则丢弃. 布隆过滤 将所有可能查询的参数添加到BloomFilter中,一定不存在的记录就会被BloomFilter过滤掉,从而避免了对底层存储系统的查询压力. 缓存空对象 如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但

缓存穿透,缓存击穿,缓存雪崩解决方案分析

本文转自:http://blog.csdn.net/zeb_perfect/article/details/54135506 前言 设计一个缓存系统,不得不要考虑的问题就是:缓存穿透.缓存击穿与失效时的雪崩效应. 缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义.在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞

缓存穿透、缓存击穿、缓存雪崩及其解决方案

1.缓存穿透 缓存穿透是指查询一个一定不存在的数据,因为缓存中也无该数据的信息,则会直接去数据库层进行查询,从系统层面来看像是穿透了缓存层直接达到DB,从而称为缓存穿透,没有了缓存层的保护,这种查询一定不存在的数据对系统来说可能是一种危险,如果有人恶意用这种一定不存在的数据来频繁请求系统(准确的说是攻击系统),请求都会到达数据库层导致DB瘫痪从而引起系统故障. 解决方案 缓存穿透业内的解决方案已经比较成熟,主要常用的有以下几种: bloom filter:类似于哈希表的一种算法,用所有可能的查询

Redis_缓存穿透、缓存击穿、缓存雪崩

一.缓存处理流程 前台请求,后台先从缓存中取数据,取到直接返回结果,取不到时从数据库中取,数据库取到更新缓存,并返回结果,数据库也没取到,那直接返回空结果. 二.缓存穿透 描述: 缓存穿透是指缓存和数据库中都没有的数据,而用户不断发起请求,如发起为id为“-1”的数据或id为特别大不存在的数据.这时的用户很可能是攻击者,攻击会导致数据库压力过大. 解决方案: 1. 接口层增加校验 , 或缓存空对象. 将 null 变成一个值. 也可以采用一个更为简单粗暴的方法,如果一个查询返回的数据为空(不管是

缓存穿透,缓存击穿,缓存雪崩的原理及解决方案

前言 设计一个缓存系统,不得不要考虑的问题就是:缓存穿透.缓存击穿与失效时的雪崩效应 缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义.在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞.举例:如发起为id为"-1"的数据或id为特别大不存在的数据.这时的用户很可能是攻击者,攻击会导致数据库压力过大.

如何设计缓存系统:缓存穿透,缓存击穿,缓存雪崩解决方案分析

前言 设计一个缓存系统,不得不要考虑的问题就是:缓存穿透.缓存击穿与失效时的雪崩效应. 缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义. 在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞. 解决方案 有很多种方法可以有效地解决缓存穿透问题,最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bi

缓存雪崩、缓存击穿、缓存穿透

1.缓存雪崩 通常我们在数据量请求大或者热点数据都会做缓存,通常情况缓存的数据是通过定时任务刷新,或者查询不到后,通过数据库查询后更新的,定时任务刷新的场景就会有问题,因为所有的key会在同一时间失效,那么在秒杀的场景中,如果缓存失效,大量的请求全部落入数据库,数据库必然是扛不住的,可能还没收到报警,实际上数据库已经宕机了 应对这种场景的处理方法是:1)在批量往redis中存数据的时候,把每个key的失效时间都加一个随机值,这样可以保证不会在同一时间大面积失效.2)电商应用目前使用redis都是