时间: 2024-10-09 04:46:55
最长上升子序列LIS(云笔记图片版)
最长上升子序列LIS(云笔记图片版)的相关文章
poj1836——dp,最长上升子序列(lis)
poj1836——dp,最长上升子序列(lis) Alignment Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 13767 Accepted: 4450 Description In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight
最长上升子序列LIS模板
1 ///最长上升子序列LIS模板 2 int BinSerch(int l,int r,int cut) 3 { 4 while (l<=r) 5 { 6 int m=(l+r)>>1; 7 if (cut>d[m]&&cut<=d[m+1]) return m; 8 if (cut>d[m]) l=m+1; 9 else r=m-1; 10 } 11 return 0; 12 } 13 14 int LIS(int n) 15 { 16 int le
动态规划(DP),最长递增子序列(LIS)
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(dp[k])+1,(k<i),(a[k]<a[i]) #include <stdio.h> #define MAX 1005 int a[MAX];///存数据 int dp[MAX];///dp[i]表示以a[i]为结尾的最长递增子序列(LIS)的长度 int main() { int
最长上升子序列LIS解法(n^n &;&; nlogn)
最长递增子序列问题 在一列数中寻找一些数满足 任意两个数a[i]和a[j] 若i<j 必有a[i]<a[j] 这样最长的子序列称为最长递增子序列LIS LIS问题有两种常见的解法 一种时间复杂度n^n 一种时间复杂度nlogn 下面我们先来说一下n^n的算法 设dp[i]表示以i结尾的最长上升子序列的长度 把问题分解 分解成序列中每一项最为终点的最大上升子序列 从第二项开始依次判断 最后找出最大的一项就是答案 则状态转移方程为 dp[i] = max{dp[j]+1}, 1<=j<
最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现
关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已经做了实现,但是这种方法时间复杂度太高,查阅相关资料后我发现有人提出的算法可以将时间复杂度降低为O(nlogn),这种算法的核心思想就是替换(二分法替换),以下为我对这中算法的理解: 假设随机生成的一个具有10个元素的数组arrayIn[1-10]如[2, 3, 3, 4, 7, 3, 1, 6,
最长上升子序列 LIS nlogn
给出一个 1 - n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的n个整数组成的序列. Output 最长上升子序列的长度 题解 这里给出两种方法,先说经典版本的,设dp[i]表示以以 a[i]为结尾的LST的长度,n方的暴力很好想,显然我们在i之间找到一个最大的LST,且要保证a[j]<a[i],那么显然dp[i]=max(dp[i],dp[j]+1),那么这个dp显然就是在i之前找到一个以小于a[i]结尾元
最长上升子序列 (LIS算法(nlong(n)))
设 A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F [t] = 0(t = 1, 2, ..., len(A)).则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, ..., t - 1, 且A[j] < A[t]). 现在,我们仔细考虑计算F[t]时的情况.假设有两个元素A[x]和A[y],满足 (1)x < y < t (2)A[x] < A[y] < A[t] (3)F[x] =
hdu1025 dp(最长上升子序列LIS)
题意:有一些穷国和一些富国分别排在两条直线上,每个穷国和一个富国之间可以建道路,但是路不能交叉,给出每个穷国和富国的联系,求最多能建多少条路 我一开始在想有点像二分图匹配orz,很快就发现,当我把穷国按顺序排了之后,富国写在它旁边,能够连接的富国就成了一个上升子序列,那么问题来了!上升子序列最长有多长? 想到了这个之后,代码就码起来吧,最开始我的做法是最土的那种,用 dp[i] 表示以 i 结尾的最长上升子序列的长度,每次对于一个 i 遍历 i 前面的所有数 j ,取小于 i 的所有 j 的最大
nlogn 求最长上升子序列 LIS
最近在做单调队列,发现了最长上升子序列O(nlogn)的求法也有利用单调队列的思想. 最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增子序列. 设dp[i]表示以i为结尾的最长递增子序列的长度,则状态转移方程为: dp[i] = max{dp[j]+1}, 1<=j<i,a[j]<a[i]. 这样简单的复杂度为O(n^2),其实还有更好的方法. 考虑两个数a[x]和a[y],x&
计蒜客课程竞赛入门--最长上升子序列(LIS) 流程记
最长上升子序列 (Longest Increasing Subsequence, 常简称为 LIS) 是动态规划解决的一个经典问题. 我们先讲一下子序列是什么.一个数组的子序列就是从里面选出一些元素,并将他们保持原有的先后顺序排列.比如[1, 2, 3, 4, 5]的子序列有[1, 3, 5].[3, 4],而[1, 5, 3]则不是这个数组的子序列. 这里多介绍一下,还有一个容易与子序列混淆的概念:子串.子串是指从一个数组中选出连续的一个或多个元素,并且保持他们原有的顺序.子串一定是子序列,比