特征与多项式回归

Features and Polynomial Regression

We can improve our features and the form of our hypothesis function in a couple different ways.

We can combine multiple features into one. For example, we can combine x1 and x2 into a new feature x3 by taking x1?x2.

Polynomial Regression

Our hypothesis function need not be linear (a straight line) if that does not fit the data well.

We can change the behavior or curve of our hypothesis function by making it a quadratic, cubic or square root function (or any other form).

For example, if our hypothesis function is hθ(x)=θ0+θ1x1 then we can create additional features based on x1, to get the quadratic function hθ(x)=θ0+θ1x1+θ2x21 or the cubic function hθ(x)=θ0+θ1x1+θ2x21+θ3x31

In the cubic version, we have created new features x2 and x3 where x2=x21 and x3=x31.

To make it a square root function, we could do: hθ(x)=θ0+θ1x1+θ2x1??√

One important thing to keep in mind is, if you choose your features this way then feature scaling becomes very important.

eg. if x1 has range 1 - 1000 then range of x21 becomes 1 - 1000000 and that of x31 becomes 1 - 1000000000

时间: 2024-11-20 13:20:48

特征与多项式回归的相关文章

梯度下降法实践以及特征和多项式回归

今天解释梯度下降法的实践 从昨天工资模型中我们引入两个变量 姓名      月工资      考勤率     上税率       合计 W          4700元       0.9            0.15         3760元 Z           4900元       0.85          0.26         3675 元 T           4850元       0.99          0.35         4122.5元 p       

机器学习之多变量线性回归(Linear Regression with multiple variables)

1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)--房屋面积x.我们希望使用这个特征量来预测房子的价格.我们的假设在下图中用蓝线划出: 不妨思考一下,如果我们不仅仅知道房屋面积(作为预测房屋价格的特征量(变量)),我们还知道卧室的数量.楼层的数量以及房屋的使用年限,那么这就给了我们更多可以用来预测房屋价格的信息. 即,支持多变量的假设为:

Ng第四课:多变量线性回归(Linear Regression with Multiple Variables)

4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性(可选) 4.1  多维特征 目前为止,探讨了单变量/特征的回归模型,现在对房价模型增加更多的特征 增添更多特征后,引入一系列新的注释: n  代表特征的数量 代表第 i  个训练实例,是特征矩阵中的第 i 行,是一个向量(vector).    (图中给转置了) 代表特征矩阵中第 i 行的第j 个

Machine Learning笔记(三) 多变量线性回归

Machine Learning笔记(三) 多变量线性回归 注:本文内容资源来自 Andrew Ng 在 Coursera上的 Machine Learning 课程,在此向 Andrew Ng 致敬. 一.多特征(Multiple Features) 笔记(二)中所讨论的房价问题,只考虑了房屋尺寸(Size)一个特征,如图所示: 这样只有单一特征的数据,往往难以帮助我们准确的预测房价走势.因此,考虑采集多个特征的数据值,往往能提升预测效果.例如,选取如下4个特征作为输入值时的情况: 对一些概念

【stanford 机器学习】学习笔记(2)--多变量线性回归(Linear Regression with Multiple Variables)

课程来自斯坦福大学吴恩达教授 machine learning: https://www.coursera.org/learn/machine-learning/home/welcome 多变量线性回归主要包括以下部分: 1) Multiple features(多维特征) 2) Gradient descent for multiple variables(梯度下降在多变量线性回归中的应用) 3) Gradient descent in practice I: Feature Scaling(

机器学习笔记02:多元线性回归、梯度下降和Normal equation

在<机器学习笔记01>中已经讲了关于单变量的线性回归以及梯度下降法.今天这篇文章作为之前的扩展,讨论多变量(特征)的线性回归问题.多变量梯度下降.Normal equation(矩阵方程法),以及其中需要注意的问题. 单元线性回归 首先来回顾一下单变量线性回归的假设函数: Size(feet2) Price($1000) 2104 460 1416 232 1534 315 852 178 - - 我们的假设函数为 hθ(x)=θ0+θ1x 多元线性回归 下面介绍多元线性回归(Linear R

Machine Learning - IV. Linear Regression with Multiple Variables (Week 2)

http://blog.csdn.net/pipisorry/article/details/43529845 机器学习Machine Learning - Andrew NG courses学习笔记 multivariate linear regression多变量线性规划 (linear regression works with multiple variables or with multiple features) Multiple Features(variables)多特征(变量)

机器学习:多变量线性回归

************************************** 注:本系列博客是博主学习Stanford大学 Andrew Ng 教授的<机器学习>课程笔记.博主深感学过课程后,不进行总结很容易遗忘,根据课程加上自己对不明白问题的补充遂有此系列博客.本系列博客包括线性回归.逻辑回归.神经网络.机器学习的应用和系统设计.支持向量机.聚类.将维.异常检测.推荐系统及大规模机器学习等内容. ************************************** 多变量线性回归 多

吴恩达2014机器学习教程笔记目录

17年开始,网上的机器学习教程逐渐增多,国内我所了解的就有网易云课堂.七月.小象学院和北风.他们的课程侧重点各有不同,有些侧重理论,有些侧重实践,结合起来学习事半功倍.但是论经典,还是首推吴恩达的机器学习课程. 吴大大14年在coursera的课程通俗易懂.短小精悍,在讲解知识点的同时,还会穿插相关领域的最新动态,并向你推荐相关论文.课程10周共18节课,每个课程都有PPT和课后习题,当然,也有中文字幕. 百度网盘(视频 + 英文字幕 + 中文字幕 + 练习 + PPT): 链接:https:/