贝叶斯方法的m-估计

为什么要有m-估计?

当我们通过在全部事件的基础上观察某事件出现的比例来估计概率时,例如:P=nc/n.,其中nc为该类别中的样本数量,n为总样本数量。若n=5,当P=0.6时,则nc为3。多数情况下该比例是对概率的一个良好的估计。但当nc很小时估计会较差,例如:P=0.08,样本中同样有5个样例,那么对于nc最可能的取值只有0,。这会导致两个问题:

1、nc/n产生了一个有偏的过低估计概率。

2、当此概率估计为0时,将来的查询此概率项将会在贝叶斯分类器中占统治地位。原因是贝叶斯公式中计算得量其他所有概率项都将乘以此0值。

为了避免此问题,所以需要采用一种估计概率,即如下定义的m-估计:

其中nc为该类别中的样本数量,n为总样本数量,p为将要确定的概率的先验估计,m为等效样本大小的常量。

为什么m-估计的公式是这样的?

首先,请思考问题出现的根本原因,问题出现的根本原因是样本数量过小。所以为了避免此问题,最好的方法是等效的扩大样本的数量,即在为观察样本添加m个等效的样本,所以要在该类别中增加的等效的类别的数量就是等效样本数m乘以先验估计p。

为什么在贝叶斯应用(如mahout)中使用的公式如下呢?

其中nk为单词W出现的次数,n为所有单词出现的次数。

其实,这只是m的取值的关系,当等效样本数m为词汇表中的单词数时,自然取统一的先验概率的p的值就是1/|vocabulary|咯。

转自:http://www.xuebuyuan.com/1562982.html

时间: 2024-11-10 18:43:22

贝叶斯方法的m-估计的相关文章

贝叶斯方法

学习资料:http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/ 概率论只不过是把常识用数学公式表达了出来. ——拉普拉斯 记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时:有一次,在书店看到一本书,名叫贝叶斯方法.当时数学系的课程还没有学到概率统计.我心想,一个方法能够专门写出一本书来,肯定很牛逼.后来,我发现当初的那个朴素归纳推理成立了——这果然是个牛逼的方法. ——题记 目录 0. 前言 1. 历史  

数学之美番外篇:平凡而又神奇的贝叶斯方法

转载自:http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/ 概率论只不过是把常识用数学公式表达了出来. ——拉普拉斯 记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时:有一次,在书店看到一本书,名叫贝叶斯方法.当时数学系的课程还没有学到概率统计.我心想,一个方法能够专门写出一本书来,肯定很牛逼.后来,我发现当初的那个朴素归纳推理成立了——这果然是个牛逼的方法. ——题记 目录 0. 前言 1. 历史   

【转载】数学之美番外篇:平凡而又神奇的贝叶斯方法

数学之美番外篇:平凡而又神奇的贝叶斯方法 BY 刘未鹏 – SEPTEMBER 21, 2008POSTED IN: 数学, 机器学习与人工智能, 计算机科学 概率论只不过是把常识用数学公式表达了出来. ——拉普拉斯 记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时:有一次,在书店看到一本书,名叫贝叶斯方法.当时数学系的课程还没有学到概率统计.我心想,一个方法能够专门写出一本书来,肯定很牛逼.后来,我发现当初的那个朴素归纳推理成立了——这果然是个牛逼的方法. ——题记 目

机器学习笔记:朴素贝叶斯方法(Naive Bayes)原理和实现

本文主要描述了朴素贝叶斯分类方法,包括模型导出和学习描述.实例部分总结了<machine learning in action>一书中展示的一个该方法用于句子感情色彩分类的程序. 方法概述 学习(参数估计) 实现:朴素贝叶斯下的文本分类 模型概述 朴素贝叶斯方法,是指 朴素:特征条件独立 贝叶斯:基于贝叶斯定理 根据贝叶斯定理,对一个分类问题,给定样本特征x,样本属于类别y的概率是 p(y|x)=p(x|y)p(y)p(x)......(1) 在这里,x是一个特征向量,将设x维度为M.因为朴素

【原】对频率论(Frequentist)方法和贝叶斯方法(Bayesian Methods)的一个总结

注: 本文是对<IPython Interactive Computing and Visualization Cookbook>一书中第七章[Introduction to statistical data analysis in Python – frequentist and Bayesian methods]的简单翻译和整理,这部分内容主要将对统计学习中的频率论方法和贝叶斯统计方法进行介绍. 本文将介绍如何洞察现实世界的数据,以及如何在存在不确定性的情况下做出明智的决定. 统计数据分析

平凡而又神奇的贝叶斯方法

转自 http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/ 数学之美番外篇:平凡而又神奇的贝叶斯方法 概率论只不过是把常识用数学公式表达了出来. --拉普拉斯 记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时:有一次,在书店看到一本书,名叫贝叶斯方法.当时数学系的课程还没有学到概率统计.我心想,一个方法能够专门写出一本书来,肯定很牛逼.后来,我发现当初的那个朴素归纳推理成立了--这果然是个牛逼的方法. --

平凡而又神奇的的贝叶斯方法

平凡而又神奇的贝叶斯方法 概率论只不过是把常识用数学公式表达了出来.    —拉普拉斯 目录 0. 前言  1. 历史      1.1 一个例子:自然语言的二义性      1.2 贝叶斯公式  2. 拼写纠正  3. 模型比较与贝叶斯奥卡姆剃刀      3.1 再访拼写纠正      3.2 模型比较理论(Model Comparasion)与贝叶斯奥卡姆剃刀(Bayesian Occam’s Razor)      3.3 最小描述长度原则      3.4 最优贝叶斯推理  4. 无处

[转]数学之美番外篇:平凡而又神奇的贝叶斯方法

原文转自:http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/ 概率论只不过是把常识用数学公式表达了出来.——拉普拉斯 记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时:有一次,在书店看到一本书,名叫贝叶斯方法.当时数学系的课程还没有学到概率统计.我心想,一个方法能够专门写出一本书来,肯定很牛逼.后来,我发现当初的那个朴素归纳推理成立了——这果然是个牛逼的方法. ——题记 目录 0. 前言 1. 历史 1.

朴素贝叶斯方法(Naive Bayes)

本文主要描述了朴素贝叶斯分类方法,包括模型导出和学习描述.实例部分总结了<machine learning in action>一书中展示的一个该方法用于句子感情色彩分类的程序.1 方法概述 学习(参数估计) 实现:朴素贝叶斯下的文本分类 模型概述 朴素贝叶斯方法,是指 朴素:特征条件独立 贝叶斯:基于贝叶斯定理 根据贝叶斯定理,对一个分类问题,给定样本特征x,样本属于类别y的概率是 p(y|x)=p(x|y)p(y)p(x)......(1) 在这里,x是一个特征向量,将设x维度为M.因为朴