Scalaz(33)- Free :算式-Monadic Programming

在任何模式的编程过程中都无法避免副作用的产生。我们可以用F[A]这种类型模拟FP的运算指令:A是可能产生副作用的运算,F[_]是个代数数据类型ADT(Algebraic Data Type),可以实现函数组合(functional composition),我们可以不用理会A,先用F[_]来组合形成描述功能的抽象程序AST(Abstract Syntax Tree),对A的运算可以分开另一个过程去实现,而且可以有多种的运算实现方式,这样就达到了算式AST(Monadic Programming)、算法(Interpretation)的所谓关注分离(separation of concern)目的。在前面的讨论中我们介绍过:我们可以把任何F[A]升格成Monad,而Monad具备最完善的函数组合性能,特别是它支持for-comprehension这种表达方式。我们可以在for-comprehension框架里进行我们熟悉的行令编程(imperative programming),可以使程序意思表达更加显而易见。

下面我们来做一个简单的示范:模拟一个互动智力算数测试(math quiz):在系统提示下,用户输入第一个数字、再输入第二个数字、再输入操作符号、系统输出算数操作结果。我们可以设计ADT如下:

1 sealed trait Quiz[+Next]
2 case class Question[Next](que: String, n: String => Next) extends Quiz[Next]
3 case class Answer[Next](ans: String, n: Next) extends Quiz[Next]

Quiz类型可能属于Question或Answer。Question需要读取一个String类型输入,由于实际需要的可能是一个Int或者是Char,在获取输入后还要进行下一步类型转换(map),所以还必须把一个转换函数String=>Next存放入Question结构。Answer则不需要任何输入,所以我们会把()作为Next的值存入Answer结构。

我们可以map over Next类型获取Quiz的Functor实例:

1   implicit object QFunctor extends Functor[Quiz] {
2     def map[A,B](qa: Quiz[A])(f: A => B): Quiz[B] =
3       qa match {
4          case q: Question[A] => Question(q.que, q.n andThen f)
5          case Answer(a,n) => Answer(a,f(n))
6       }
7   }

从case q: Question[A]可以看出来:map over Next实际上是连续运算(andThen)。

我们再来几个操作帮助方法:

 1 //操作帮助方法helper methods
 2   def askNumber(q: String) = Question(q, (inputString => inputString.toInt))  //_.toInt
 3   def askOperator(q: String) = Question(q, (inputString => inputString.head.toUpper.toChar))
 4   def answer(fnum: Int, snum: Int, opr: Char) = {
 5     def result =
 6       opr match {
 7         case ‘A‘ => fnum + snum
 8         case ‘M‘ => fnum * snum
 9         case ‘D‘ => fnum / snum
10         case ‘S‘ => fnum - snum
11       }
12     Answer("my answer is: " + result.toString,())
13   }

我们现在可以这样编写AST了:

1 import Quiz._
2 val prg = for {
3  fn <- askNumber("The first number is:")
4  sn <- askNumber("The second number is:")
5  op <- askOperator("The operation is:")
6  _ <- answer(fn,sn,op)
7 } yield()                                         //> prg  : scalaz.Free[Exercises.interact.Quiz,Unit] = Gosub()

但是,askNumber,askOperator及answer这几个操作函数都返回了Quiz类型,而Quiz类型不是Monad,不支持for-comprehension。我们可以用个隐式转换把所有Quiz[A]升格成Free[Quiz,A]:

1   implicit def quizToFree[A](qz: Quiz[A]): Free[Quiz,A] = Free.liftF(qz)

这个示范完整的源代码如下:

 1 sealed trait Quiz[+Next]
 2 object Quiz {
 3 //问题que:String, 等待String 然后转成数字或操作符号
 4   case class Question[Next](que: String, n: String => Next) extends Quiz[Next]
 5   case class Answer[Next](ans: String, n: Next) extends Quiz[Next]
 6   implicit object QFunctor extends Functor[Quiz] {
 7     def map[A,B](qa: Quiz[A])(f: A => B): Quiz[B] =
 8       qa match {
 9          case q: Question[A] => Question(q.que, q.n andThen f)
10          case Answer(a,n) => Answer(a,f(n))
11       }
12   }
13 //操作帮助方法helper methods
14   def askNumber(q: String) = Question(q, (inputString => inputString.toInt))  //_.toInt
15   def askOperator(q: String) = Question(q, (inputString => inputString.head.toUpper.toChar)) //_.head.toUpper.toChar
16   def answer(fnum: Int, snum: Int, opr: Char) = {
17     def result =
18       opr match {
19         case ‘A‘ => fnum + snum
20         case ‘M‘ => fnum * snum
21         case ‘D‘ => fnum / snum
22         case ‘S‘ => fnum - snum
23       }
24     Answer("my answer is: " + result.toString,())
25   }
26   implicit def quizToFree[A](qz: Quiz[A]): Free[Quiz,A] = Free.liftF(qz)
27 }
28 import Quiz._
29 val prg = for {
30  fn <- askNumber("The first number is:")
31  sn <- askNumber("The second number is:")
32  op <- askOperator("The operation is:")
33  _ <- answer(fn,sn,op)
34 } yield()                                         //> prg  : scalaz.Free[Exercises.interact.Quiz,Unit] = Gosub()

再看看下面的例子。试着猜测程序的作用:

 1 sealed trait Calc[+A]
 2 object Calc {
 3   case class Push(value: Int) extends Calc[Unit]
 4   case class Add() extends Calc[Unit]
 5   case class Mul() extends Calc[Unit]
 6   case class Div() extends Calc[Unit]
 7   case class Sub() extends Calc[Unit]
 8   implicit def calcToFree[A](ca: Calc[A]) = Free.liftFC(ca)
 9 }
10 import Calc._
11 val ast = for {
12   _ <- Push(23)
13   _ <- Push(3)
14   _ <- Add()
15   _ <- Push(5)
16   _ <- Mul()
17 } yield ()                                        //> ast  : scalaz.Free[[x]scalaz.Coyoneda[Exercises.interact.Calc,x],Unit] = Gosub()

从上面的AST表达方式可以估计到这是一个对Int进行加减乘除的计算器,应该是先通过push把操作对象存入一个Stack。然后对Stack内部的数字进行计算操作。具体是如何实现的,在这个阶段无需知道,这应该是Interpreter的工作。这个例子不就真正体现了算式算法的关注分离了的精髓嘛。

时间: 2024-08-15 16:11:35

Scalaz(33)- Free :算式-Monadic Programming的相关文章

泛函编程(24)-泛函数据类型-Monad, monadic programming

在上一节我们介绍了Monad.我们知道Monad是一个高度概括的抽象模型.好像创造Monad的目的是为了抽取各种数据类型的共性组件函数汇集成一套组件库从而避免重复编码.这些能对什么是Monad提供一个明确的答案吗?我们先从上节设计的Monad组件库中的一些基本函数来加深一点对Monad的了解: 1 trait Monad[M[_]] extends Functor[M] { 2 def unit[A](a: A): M[A] 3 def flatMap[A,B](ma: M[A])(f: A =

Scalaz(38)- Free :Coproduct-Monadic语句组合

很多函数式编程爱好者都把FP称为Monadic Programming,意思是用Monad进行编程.我想FP作为一种比较成熟的编程模式,应该有一套比较规范的操作模式吧.因为Free能把任何F[A]升格成Monad,所以Free的算式(AST).算法(Interpreter)关注分离(separation of concern)模式应该可以成为一种规范的FP编程模式.我们在前面的几篇讨论中都涉及了一些AST的设计和运算,但都是一些功能单一,离散的例子.如果希望通过Free获取一个完整可用的程序,就

Scalaz(38)- Free :Coproduce-Monadic语句组合

很多函数式编程爱好者都把FP称为Monadic Programming,意思是用Monad进行编程.我想FP作为一种比较成熟的编程模式,应该有一套比较规范的操作模式吧.因为Free能把任何F[A]升格成Monad,所以Free的算式(AST).算法(Interpreter)关注分离(separation of concern)模式应该可以成为一种规范的FP编程模式.我们在前面的几篇讨论中都涉及了一些AST的设计和运算,但都是一些功能单一,离散的例子.如果希望通过Free获取一个完整可用的程序,就

Scalaz(36)- Free :实践-Free In Action - 实用体验

在上面几期讨论中我们连续介绍了Free Monad.因为FP是纯函数编程,也既是纯函数的组合集成,要求把纯代码和副作用代码可以分离开来.Free Monad的程序描述(AST)和程序实现(Interpretation)关注分离(separation of concern)模式恰恰能满足FP要求.我们可以用一些代数数据类型(ADT Algebraic Data Type)来模拟功能,再把这些ADT组合起来形成AST(Abstract Syntax Tree).AST既是对程序功能的描述,它的组成过

Scalaz(43)- 总结 :FP就是实用的编程模式

完成了对Free Monad这部分内容的学习了解后,心头豁然开朗,存在心里对FP的疑虑也一扫而光.之前也抱着跟大多数人一样的主观概念,认为FP只适合学术性探讨.缺乏实际应用.运行效率低,很难发展成现实的软件开发模式.Free Monad的出现恰恰解决我心中的疑问,更正了我对FP的偏见:Free Monad提供了一套在Monad 算法内(在 for-comprehension内)的行令编程(imperative programming)方法,解决了FP的复杂语法,使Monadic编程更贴近传统编程

泛函编程(33)-泛函IO:Free Functor - Coyoneda

在前几期讨论中我们终于推导出了Free Monad.这是一个Monad工厂,它可以把任何F[A]变成Monad.可惜的是它对F[A]是有所要求的:F必须是个Functor.Free Monad由此被称为由Functor F 产生的Monad.F必须是Functor,这个门槛使我们在使用Free Monad时很不方便.举个前面讨论过的例子: 1 trait Console[A] 2 case object GetLine extends Console[String] 3 case class P

Scalaz(10)- Monad:就是一种函数式编程模式-a design patter

Monad typeclass不是一种类型,而是一种程序设计模式(design pattern),是泛函编程中最重要的编程概念,因而很多行内人把FP又称为Monadic Programming.这其中透露的Monad重要性则不言而喻.Scalaz是通过Monad typeclass为数据运算的程序提供了一套规范的编程方式,如常见的for-comprehension.而不同类型的Monad实例则会支持不同的程序运算行为,如:Option Monad在运算中如果遇到None值则会中途退出:State

Scalaz(25)- Monad: Monad Transformer-叠加Monad效果

中间插播了几篇scalaz数据类型,现在又要回到Monad专题.因为FP的特征就是Monad式编程(Monadic programming),所以必须充分理解认识Monad.熟练掌握Monad运用.曾经看到一段对Monad的描述:“Monadic for-comprehension就是一种嵌入式编程语言,由它的Monad提供它的语法”.但如果每一种Monad的for-comprehension都独立提供一套语法的话,这种编程语言就显得十分单调.功能简单了.那么既然是FP,我们应该可以通过函数组合

Cats(1)- 从Free开始,Free cats

cats是scala的一个新的函数式编程工具库,其设计原理基本继承了scalaz:大家都是haskell typeclass的scala版实现.当然,cats在scalaz的基础上从实现细节.库组织结构和调用方式上进行了一些优化,所以对用户来说:cats的基础数据类型.数据结构在功能上与scalaz是大致相同的,可能有一些语法上的变化.与scalaz著名抽象.复杂的语法表现形式相比,cats的语法可能更形象.简单直白.在scalaz的学习过程中,我们了解到所谓函数式编程就是monadic Pro