[问题2015S12] 设 \(A\) 为 \(n\) 阶实矩阵, 若对任意的非零 \(n\) 维实列向量 \(\alpha\), 总有 \(\alpha‘A\alpha>0\), 则称 \(A\) 为亚正定阵. 显然, 如果 \(A\) 既是实对称阵, 又是亚正定阵, 那么 \(A\) 就是正定阵. 以下设 \(A,B\) 都是 \(n\) 阶亚正定阵, \(c\) 是正实数, 求证:
(1) \(A\) 是亚正定阵的充要条件是 \(A+A‘\) 是正定阵;
(2) \(A\) 的特征值的实部都大于零, 特别的, \(|A|>0\);
(3) \(A^{-1}\), \(A^*\), \(A+B\), \(cA\) 都是亚正定阵;
(4) 若 \(C\) 是 \(n\) 阶非异实矩阵, 则 \(C‘AC\) 是亚正定阵;
(5) 若 \(B\) 是对称阵且 \(A-B\) 是亚正定阵, 则 \(B^{-1}-A^{-1}\) 也是亚正定阵.
问题解答请在以下网址下载:http://pan.baidu.com/share/home?uk=103502710#category/type=0
时间: 2024-10-14 17:16:51