R语言 PCA

1、关键点

综述:主成分分析 因子分析 典型相关分析,三种方法的共同点主要是用来对数据降维处理的从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。

#主成分分析 是将多指标化为少数几个综合指标的一种统计分析方法

主成分分析是一种通过降维技术把多个变量化成少数几个主成分的方法,这些主成分能够反映原始变量的大部分信息,他们通常表示为原始变量的线性组合。

2、函数总结

#R中作为主成分分析最主要的函数是princomp()函数
#princomp()主成分分析   可以从相关阵或者从协方差阵做主成分分析
#summary()提取主成分信息 
#loadings()显示主成分分析或因子分析中载荷的内容
#predict()预测主成分的值 
#screeplot()画出主成分的碎石图 
#biplot()画出数据关于主成分的散点图和原坐标在主成分下的方向

3、案例

#现有30名中学生身高、体重、胸围、坐高数据,对身体的四项指标数据做主成分分析。

#1.载入原始数据
test<-data.frame(
  X1=c(148, 139, 160, 149, 159, 142, 153, 150, 151, 139,
           140, 161, 158, 140, 137, 152, 149, 145, 160, 156,
           151, 147, 157, 147, 157, 151, 144, 141, 139, 148),
  X2=c(41, 34, 49, 36, 45, 31, 43, 43, 42, 31,
           29, 47, 49, 33, 31, 35, 47, 35, 47, 44,
           42, 38, 39, 30, 48, 36, 36, 30, 32, 38),
  X3=c(72, 71, 77, 67, 80, 66, 76, 77, 77, 68,
          64, 78, 78, 67, 66, 73, 82, 70, 74, 78,
          73, 73, 68, 65, 80, 74, 68, 67, 68, 70),
  X4=c(78, 76, 86, 79, 86, 76, 83, 79, 80, 74,
           74, 84, 83, 77, 73, 79, 79, 77, 87, 85,
           82, 78, 80, 75, 88, 80, 76, 76, 73, 78)
  )

#2.作主成分分析并显示分析结果
test.pr<-princomp(test,cor=TRUE)  #cor是逻辑变量当cor=TRUE表示用样本的相关矩阵R做主成分分析

当cor=FALSE表示用样本的协方差阵S做主成分分析
summary(test.pr,loadings=TRUE)  #loading是逻辑变量当loading=TRUE时表示显示loading 的内容

#loadings的输出结果为载荷是主成分对应于原始变量的系数即Q矩阵

分析结果含义
#----Standard deviation 标准差   其平方为方差=特征值
#----Proportion of Variance  方差贡献率
#----Cumulative Proportion  方差累计贡献率

#由结果显示 前两个主成分的累计贡献率已经达到96% 可以舍去另外两个主成分 达到降维的目的

因此可以得到函数表达式 Z1=-0.497X‘1-0.515X‘2-0.481X‘3-0.507X‘4

Z2=  0.543X‘1-0.210X‘2-0.725X‘3-0.368X‘4

#4.画主成分的碎石图并预测

screeplot(test.pr,type="lines")

p<-predict(test.pr)

由碎石图可以看出 第二个主成分之后 图线变化趋于平稳 因此可以选择前两个主成分做分析

时间: 2024-10-11 14:29:17

R语言 PCA的相关文章

主成分分析(PCA)原理及R语言实现

原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)——基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 主成分分析(PCA)原理详解(推荐) 多变

【转】R语言主成分分析(PCA)

https://www.cnblogs.com/jin-liang/p/9064020.html 数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') #数据的导入 > > ls(data) #ls()函数列出所有变量 [1] "X" "不良贷款率" "存贷款比率" "存款增长率" "贷款增长率" "流动比率" "收

R语言无监督学习:PCA主成分分析可视化

原文链接:http://tecdat.cn/?p=9839 总览 在监督学习中,我们通常可以访问n个  观测值的p个  特征  集  ,并 在相同观测值上测得的  Y. 无监督学习是一组没有相关的变量  Y的方法.在这里,我们重点介绍两种技术… 主成分分析:用于数据可视化或在其他监督学习方法之前进行预处理的工具. 聚类:发现数据中未知组的方法. 无监督学习的挑战 通常,无监督学习比主观学习更具挑战性,因为它更具主观性.分析没有简单的目标,例如预测响应.无监督学习通常用作  探索性数据分析的一部分

R语言:recommenderlab包的总结与应用案例

R语言:recommenderlab包的总结与应用案例 1. 推荐系统:recommenderlab包整体思路 recommenderlab包提供了一个可以用评分数据和0-1数据来发展和测试推荐算法的框架.它提供了几种基础算法,并可利用注册机制允许用户使用自己的算法recommender包的数据类型采用S4类构造. (1)评分矩阵数据接口:使用抽象的raringMatrix为评分数据提供接口.raringMatrix采用了很多类似矩阵对象的操作,如 dim(),dimnames() ,rowCo

R语言重要数据集分析研究——需要整理分析阐明理念

1.R语言重要数据集分析研究需要整理分析阐明理念? 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候如何下手分析,数据分析的第一步,探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标,常用的如下:最小值,最大值,四分位数,均值,中位数,众数,方差,标准差,极差,偏度,峰度 先来解释一下各个量得含义,浅显就不说了,这里主要说一下不常见的 众数:出现次数最多的 方差:每个样本值与均值的差得平方和的平均数 标准差:又称均方差,是方差的二次方根,用来衡量一个数据集的集中性 极差:最大值

R语言多元分析系列

R语言多元分析系列之一:主成分分析 主成分分析(principal components analysis, PCA)是一种分析.简化数据集的技术.它把原始数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推.主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征.这是通过保留低阶主成分,忽略高阶主成分做到的.这样低阶成分往往能够保留住数据的最重要方面.但是在处理观测数目小于变量数目时无法发挥

使用R语言计算均值,方差等

R语言对于数值计算很方便,最近用到了计算方差,标准差的功能,特记录. 数据准备 height <- c(6.00, 5.92, 5.58, 5.92) 1 计算均值 mean(height) [1] 5.855 2 计算中位数 median(height) [1] 5.92 3 计算标准差 sd(height) [1] 0.1871719 4 计算方差 var(height) [1] 0.03503333 5 计算两个变量之间的相关系数 cor(height,log(height)) [1] 0

R语言快速上手入门

R语言快速上手入门 课程学习网址:http://www.xuetuwuyou.com/course/196 课程出自学途无忧网:http://www.xuetuwuyou.com 课程简介 本教程深入浅出地讲解如何使用R语言玩转数据.课程中涵盖R语言编程的方方面面,内容涉及R对象的类型.R的记号体系和环境系统.自定义函数.if else语句.for循环.S3类R的包系统以及调试工具等.本课程还通过示例演示如何进行向量化编程,从而对代码进行提速并尽可能地发挥R的潜能.本课程适合立志成为数据科学家的

R语言学习-词频分析

概念 1.语料库-Corpus 语料库是我们要分析的所有文档的集合,就是需要为哪些文档来做词频 2.中文分词-Chinese Word Segmentation 指的是将一个汉字序列切分成一个一个单独的词语. 3.停用词-Stop Words 数据处理的时候,自动过滤掉某些字或词,包括泛滥的词如Web.网站等,又如语气助词如的.地.得等. 需要加载的包 1.tm包 安装方式:install.packages("tm") 语料库: Corpus(x,readerControl) x-语料