Spark 1.0.0 横空出世 Spark on yarn 部署(hadoop 2.4)

就在昨天,北京时间5月30日20点多。Spark 1.0.0终于发布了:Spark 1.0.0 released

根据官网描述,Spark 1.0.0支持SQL编写:Spark SQL Programming Guide

个人觉得这个功能对Hive的市场的影响很小,但对Shark冲击很大,就像win7和winXP的关系,自相残杀嘛?

这么着急的发布1.x 版是商业行为还是货真价实的体现,让我们拭目以待吧~~~~

本文是CSDN-撸大湿原创,如要转载请注明出处,谢谢:http://blog.csdn.net/tntzbzc/article/details/27817189

进入今天的正题:Spark 1.x on yarn (hadoop 2.4)

源码编译

我的测试环境:

  • 系统:Centos 6.4 - 64位
  • Java:1.7.45
  • Scala:2.10.4
  • Hadoop:2.4.0 社区版

Spark 1.0.0 源码地址:http://d3kbcqa49mib13.cloudfront.net/spark-1.0.0.tgz

解压源码,在根去根目录下执行以下命令(sbt编译我没尝试)

./make-distribution.sh --hadoop 2.4.0 --with-yarn --tgz --with-hive

几个重要参数

--hadoop :指定Hadoop版本

--with-yarn yarn支持是必须的

--with-hive 读取hive数据也是必须的,反正我很讨厌Shark,以后开发们可以在Spark上自己封装SQL&HQL客户端,也是个不错的选择。

#      --tgz: Additionally creates spark-$VERSION-bin.tar.gz

#      --hadoop VERSION: Builds against specified version of Hadoop.

#      --with-yarn: Enables support for Hadoop YARN.

#      --with-hive: Enable support for reading Hive tables.

#      --name: A moniker for the release target. Defaults to the Hadoop verison.

不想自己编译的话直接下载二进制包吧:

Spark 1.0.0 on Hadoop 1 / CDH3, CDH4 二进制包:http://d3kbcqa49mib13.cloudfront.net/spark-1.0.0-bin-hadoop1.tgz

Spark 1.0.0 on Hadoop 2 / CDH5, HDP2 二进制包:http://d3kbcqa49mib13.cloudfront.net/spark-1.0.0-bin-hadoop2.tgz

进过漫长的等待,在源码跟目录下会生成一个tgz压缩包

把这个包copy到你想部署的目录并解压。

特别注意:只需要copy你的yarn集群中的任意一台。一台就够了,不需要全部都部署,除非你需要多个Client节点调用作业。

在这里我们不需要搭建独立的Spark集群,利用Yarn Client调用Hadoop集群的计算资源。

mv 解压后的目录/conf/spark-env.sh.template 解压后的目录/conf/spark-env.sh

编辑spark-env.sh

export HADOOP_HOME=/opt/hadoop

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

SPARK_EXECUTOR_INSTANCES=4

SPARK_EXECUTOR_CORES=1

SPARK_EXECUTOR_MEMORY=1G

SPARK_DRIVER_MEMORY=2G

SPARK_YARN_APP_NAME="Spark 1.0.0"

这是我的配置,配置和之前的几个版本略有不同,但大差不差。

用Yarn Client调用一下MR中的经典例子:Spark版的word count

这里要特别注意,SparkContext有变动,之前版本wordcount例子中的的第一个参数要去掉。

SPARK_JAR="hdfs://master001.bj:9000/jar/spark/spark-assembly-1.0.0-hadoop2.4.0.jar" ./bin/spark-class org.apache.spark.deploy.yarn.Client --jar ./lib/spark-examples-1.0.0-hadoop2.4.0.jar --class org.apache.spark.examples.JavaWordCount --args hdfs://master001.bj:9000/temp/read.txt --num-executors 50 --executor-cores 1 --driver-memory 2048M --executor-memory 1000M --name "word count on spark"

运行结果在stdout中查看

速度还行吧,用6台节点/50个core计算4.3GB文件,用时31秒。

今天就到这吧,有时间还的把那篇神经网络继续写下去,下次再见

Spark 1.0.0 横空出世 Spark on yarn 部署(hadoop 2.4),布布扣,bubuko.com

时间: 2024-12-22 02:20:25

Spark 1.0.0 横空出世 Spark on yarn 部署(hadoop 2.4)的相关文章

spark 在yarn执行job时一直抱0.0.0.0:8030错误

近日新写完的spark任务放到yarn上面执行时,在yarn的slave节点中一直看到报错日志:连接不到0.0.0.0:8030 . 1 The logs are as below: 2 2014-08-11 20:10:59,795 INFO [main] org.apache.hadoop.yarn.client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8030 3 2014-08-11 20:11:01,838 INFO [ma

Spark修炼之道(进阶篇)——Spark入门到精通:第一节 Spark 1.5.0集群搭建

作者:周志湖 网名:摇摆少年梦 微信号:zhouzhihubeyond 本节主要内容 操作系统环境准备 Hadoop 2.4.1集群搭建 Spark 1.5.0 集群部署 注:在利用CentOS 6.5操作系统安装spark 1.5集群过程中,本人发现Hadoop 2.4.1集群可以顺利搭建,但在Spark 1.5.0集群启动时出现了问题(可能原因是64位操作系统原因,源码需要重新编译,但本人没经过测试),经本人测试在ubuntu 10.04 操作系统上可以顺利成功搭建.大家可以利用CentOS

Apache Spark-1.0.0代码浅析(二):Spark初始化

LocalWordCount中,需要首先创建SparkConf配置Master.AppName等环境参数,如果程序中没有设置,则会读取系统参数.然后,以SparkConf作为参数创建SparkContext,初始化Spark环境. val sparkConf = new SparkConf().setMaster("local").setAppName("Local Word Count") val sc = new SparkContext(sparkConf)

Spark 1.0.0版本发布

前言 今天Spark终于跨出了里程碑的一步,1.0.0版本的发布标志着Spark已经进入1.0时代.1.0.0版本不仅加入了很多新特性,并且提供了更好的API支持.Spark SQL作为一个新的组件加入,支持在Spark上存储和操作结构化的数据.已有的标准库比如ML.Streaming和GraphX也得到了很大程度上的增强,对Spark和Python的接口也变得更稳定.以下是几个主要的改进点: 融合YARN的安全机制 Hadoop有着自己的安全机制,包括认证和授权.Spark现在可以和Hadoo

Apache Spark 1.5.0正式发布

Spark 1.5.0是1.x线上的第6个发行版.这个版本共处理了来自230+contributors和80+机构的1400+个patches.Spark 1.5的许多改变都是围绕在提升Spark的性能.可用性以及操作稳定性.Spark 1.5.0焦点在Tungsten项目,它主要是通过对低层次的组建进行优化从而提升Spark的性能.Spark 1.5版本为Streaming增加了operational特性,比如支持backpressure.另外比较重要的更新就是新增加了一些机器学习算法和工具,

Spark 1.0.0企业级开发动手:实战世界上第一个Spark 1.0.0课程,涵盖Spark 1.0.0所有的企业级开发技术

课程介绍 2014年5月30日发布了Spark 1.0.0版本,而本课程是世界上第一个Spark1.0.0企业级实践课程,课程包含Spark的架构设计.Spark编程模型.Spark内核框架源码剖析.Spark的广播变量与累加器.Shark的原理和使用.Spark的机器学习.Spark的图计算GraphX.Spark SQL.Spark实时流处理.Spark的优化.Spark on Yarn.JobServer等Spark 1.0.0所有的核心内容 最后以一个商业级别的Spark案例为基础,实战

Spark 【数据挖掘平台介绍】 - Spark 1.1.0

一:Spark Spark已正式申请加入Apache孵化器,从灵机一闪的实验室"电火花"成长为大数据技术平台中异军突起的新锐.本文主要讲述Spark的设计思想.Spark如其名,展现了大数据不常见的"电光石火".具体特点概括为"轻.快.灵和巧". 轻:Spark 0.6核心代码有2万行,Hadoop 1.0为9万行,2.0为22万行.一方面,感谢Scala语言的简洁和丰富表达力:另一方面,Spark很好地利用了Hadoop和Mesos(伯克利 另

Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南 | ApacheCN

Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas

Apache Spark 2.2.0 中文文档 - SparkR (R on Spark) | ApacheCN

SparkR (R on Spark) 概述 SparkDataFrame 启动: SparkSession 从 RStudio 来启动 创建 SparkDataFrames 从本地的 data frames 来创建 SparkDataFrames 从 Data Sources(数据源)创建 SparkDataFrame 从 Hive tables 来创建 SparkDataFrame SparkDataFrame 操作 Selecting rows(行), columns(列) Groupin