娘的,自己的求逆序对模板又不好使了。。。。。。。。

#include<stdio.h>

long long cnt;
long long  a[500001],t[500001];

void merge(long long *a,long long *t,int l,int m,int r)
{
    int p = l;
    int q = m+1;
    int k = p;
    while(p <= m||q <= r)
    {
        if(q > r||(p <= m&&a[p] <= a[q]))
            t[k++] = a[p++];
        else
        {
            cnt += m-p+1;
            t[k++]=a[q++];
        }
    }
    for(int i = l; i <= r; i++)a[i]=t[i];
}
void mergesort(long long *a,long long *t,int l,int r)
{
    if(r > l)
    {
        int m = (l+r)/2;
        mergesort(a,t,l,m);
        mergesort(a,t,m+1,r);
        merge(a,t,l,m,r);
    }
}
int main()
{
    int n;
    while(~scanf("%d", &n))
    {
        if(n==0)
            break;
        cnt = 0;
        for(int i = 0; i < n; i++)
            scanf("%lld", &a[i]);
        mergesort(a,t,0,n-1);
        printf("%lld\n", cnt);
    }
    return 0;
}
时间: 2024-10-26 05:49:13

娘的,自己的求逆序对模板又不好使了。。。。。。。。的相关文章

归并排序求逆序对模板(未完待续)

归并排序求逆序对题目(持续更新) \(1.\) \(Ultra\) \(Quicksort\) (需要该篇博文的阅读密码) 归并排序求逆序对 细节:传参三个,左.中.右三端点,每次运算注意中端点总取左右端点和的一半:返回条件为左右端点相等,此时无需排序. \(View\) \(Code\) void msort(int l,int mid,int r) { if(l==r) return; msort(l,(l+mid)>>1,mid); msort(mid+1,(r+mid+1)>&g

树状树组离散化求逆序对模板

#include <iostream> #include <cstring> #include <stack> #include <cstdio> #include <cmath> #include <queue> #include <algorithm> #include <vector> #include <set> #include <map> using namespace st

归并排序求逆序对

归并排序求逆序对 by mps [1]什么是逆序对? 对于一个数列需要按从小到大排序,如果有ai,aj且满足ai>aj和i<j则ai,aj为一组逆序对 [2]如何求逆序对? 我们发现,我们可以暴力枚举i,j,然后逐一判断并累加答案即可,时间复杂度O(N2)        但是对于数据量大一点的题目,只有不断地TLE了→_→ [3]归并排序求逆序对 逆序对的定义(见[1])是一组本应该有序的序列中的逆序对,那么我们就想到了排序,但由于是要22匹配,我们又想到了归并排序 归并排序大致内容如下: 将

树状数组求逆序对:POJ 2299、3067

前几天开始看树状数组了,然后开始找题来刷. 首先是 POJ 2299 Ultra-QuickSort: http://poj.org/problem?id=2299 这题是指给你一个无序序列,只能交换相邻的两数使它有序,要你求出交换的次数.实质上就是求逆序对,网上有很多人说它的原理是冒泡排序,可以用归并排序来求出,但我一时间想不出它是如何和归并排序搭上边的(当初排序没学好啊~),只好用刚学过的树状数组来解决了.在POJ 1990中学到了如何在实际中应用上树状数组,没错,就是用个特殊的数组来记录即

2014 HDU多校弟五场A题 【归并排序求逆序对】

这题是2Y,第一次WA贡献给了没有long long 的答案QAQ 题意不难理解,解题方法不难. 先用归并排序求出原串中逆序对的个数然后拿来减去k即可,如果答案小于0,则取0 学习了归并排序求逆序对的方法,可以拿来当模板 TVT 贴代码了: 1 #include <stdio.h> 2 #include <string.h> 3 #include <stdlib.h> 4 #include <math.h> 5 #include <iostream&g

归并排序+归并排序求逆序对(例题P1908)

归并排序(merge sort) 顾名思义,这是一种排序算法,时间复杂度为O(nlogn),时间复杂度上和快排一样 归并排序是分治思想的应用,我们先将n个数不断地二分,最后得到n个长度为1的区间,显然,这n个小区间都是单调的,随后合并相邻的两个区间,得到n/2个单增(减)的区间,随后我们继续合并相邻的两个区间,得到n/4个单增(减)的区间.... 每次合并操作的总时间复杂度为O(n),logn次合并用时O(logn),故总时间复杂度为O(nlogn) 合并操作比较好理解,就像下图这样二分区间即可

求逆序对(线段树版)

一个序列a1,a2,a3...aN,求出满足:ai > aj 且 i < j 的个数. 一个最容易想到的方法就是枚举所有的i,j看看是否满足,显然是O(n^2)的复杂度.不够好. 可以这样考虑,开一个数组保存这n个数出现的位置和对应的次数,这个数组要开到a数组里最大的那个数MAX,也就是hash,初始状态数组里没有元素,每个数对应的个数都是0. 如果考虑第i个数,找到比它大的所有的数 的个数,查找的范围即 ai+1~MAX,这就是到i这个位置的逆序对的总和,接着把a[i]这个数添加到数组里,也

树状数组求逆序对

给定n个数,要求这些数构成的逆序对的个数.除了用归并排序来求逆序对个数,还可以使用树状数组来求解.树状数组求解的思路:开一个能大小为这些数的最大值的树状数组,并全部置0.从头到尾读入这些数,每读入一个数就更新树状数组,查看它前面比它小的已出现过的有多少个数sum,然后用当前位置减去该sum,就可以得到当前数导致的逆序对数了.把所有的加起来就是总的逆序对数.题目中的数都是独一无二的,这些数最大值不超过999999999,但n最大只是500000.如果采用上面的思想,必然会导致空间的巨大浪费,而且由

分治法 求 逆序对数 的个数 时间复杂度为O(n*logn)

思路: 分治法 归并排序的过程中,有一步是从左右两个数组中,每次都取出小的那个元素放到tmp[]数组中 右边的数组其实就是原数组中位于右侧的元素.当不取左侧的元素而取右侧的元素时,说明左侧剩下的元素均比右侧的第一个元素大,即均能构成一个逆序对.假设现在左侧剩余n个元素,则逆序对数+n. 另外,如果当所有右侧的元素都取完,但是左侧仍然有元素剩余时,左侧剩余的元素已经在之前的运算中加到了逆序对中,不需要再添加一次 下面给出 归并排序 和 求逆序对数 两份代码: code1: 归并排序 #includ