梯度下降VS随机梯度下降

样本个数m,x为n维向量。
h_theta(x) = theta^t * x
梯度下降需要把m个样本全部带入计算,迭代一次计算量为m*n^2

随机梯度下降每次只使用一个样本,迭代一次计算量为n^2,当m很大的时候,随机梯度下降迭代一次的速度要远高于梯度下降

时间: 2024-12-28 01:29:02

梯度下降VS随机梯度下降的相关文章

梯度下降法和随机梯度下降法的区别

这几天在看<统计学习方法>这本书,发现 梯度下降法 在 感知机 等机器学习算法中有很重要的应用,所以就特别查了些资料.  一.介绍       梯度下降法(gradient descent)是求解无约束最优化问题的一种常用方法,有实现简单的优点.梯度下降法是迭代算法,每一步需要求解目标函数的梯度向量.  二.应用场景      1.给定许多组数据(xi, yi),xi (向量)为输入,yi为输出.设计一个线性函数y=h(x)去拟合这些数据. 2.感知机:感知机(perceptron)为二类分类

对数几率回归法(梯度下降法,随机梯度下降与牛顿法)与线性判别法(LDA)

本文主要使用了对数几率回归法与线性判别法(LDA)对数据集(西瓜3.0)进行分类.其中在对数几率回归法中,求解最优权重W时,分别使用梯度下降法,随机梯度下降与牛顿法. 代码如下: 1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- 3 # @Date : 2017-05-09 15:03:50 4 # @Author : whb ([email protected]) 5 # @Link : ${link} 6 # @Version : $Id$

NN优化方法对比:梯度下降、随机梯度下降和批量梯度下降

1.前言 这几种方法呢都是在求最优解中经常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中,都是围绕以下这个式子展开: 其中在上面的式子中hθ(x)代表,输入为x的时候的其当时θ参数下的输出值,与y相减则是一个相对误差,之后再平方乘以1/2,并且其中 注意到x可以一维变量,也可以是多维变量,实际上最常用的还是多维变量.我们知道曲面上方向导数的最大值的方向就代表了梯度的方向,因此我们在做梯度下降的时候,应该是沿着梯度的反方向进行权重的更新,可以有效的找到全局的最优解.这个θ的更新过程可以描

机器学习算法(优化)之一:梯度下降算法、随机梯度下降(应用于线性回归、Logistic回归等等)

本文介绍了机器学习中基本的优化算法-梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有样本的特征向量组成的矩阵 x(i) 是第i个样本包含的所有特征组成的向量x(i)=(x(i)1,x(i)2...,x(i)n) y(i) 第i个样本的label,每个样本只有一个label,y(i)是标量(一个数值) hθ(x(i)) :拟合函数,机器学习中可以用多种类型的拟合函数 θ 是函数变量,

梯度下降法、随机梯度下降法、小批量梯度下降法

本文以二维线性拟合为例,介绍批量梯度下降法.随机梯度下降法.小批量梯度下降法三种方法,求解拟合的线性模型参数. 需要拟合的数据集是 $(X_1, y_1), (X_2, y_2)..., (X_n, y_n)$,其中$X^i=(x_1^i, x_2^i)$,表示2个特征,$y^j$是对应的回归值. 拟合得到的函数是 $h_{\theta_1, \theta_2}(X)$,尽可能使${h_{{\theta _1},{\theta _2}}}(X) \approx y$. 损失函数是$J(\thet

批量梯度下降与随机梯度下降

下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,j是参数的个数. 1.批量梯度下降(BGD)的求解思路如下: (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度 (2)由于是要最小化风险函数,所以按每个参数theta的梯度负方向,来更新每个theta (3)从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数

梯度下降、随机梯度下降、方差减小的梯度下降(matlab实现)

梯度下降代码: function [ theta, J_history ] = GradinentDecent( X, y, theta, alpha, num_iter ) m = length(y); J_history = zeros(20, 1); i = 0; temp = 0; for iter = 1:num_iter     temp = temp +1;     theta = theta - alpha / m * X' * (X*theta - y);     if tem

神经网络与深度学习(2):梯度下降算法和随机梯度下降算法

本文总结自<Neural Networks and Deep Learning>第1章的部分内容. 使用梯度下降算法进行学习(Learning with gradient descent) 1. 目标 我们希望有一个算法,能让我们找到权重和偏置,以至于网络的输出y(x) 能够拟合所有的训练输入x. 2. 代价函数(cost function) 定义一个Cost function (loss function, objective function): 目标函数,如下: C: 被称为二次代价函数

梯度下降法VS随机梯度下降法 (Python的实现)

1 # -*- coding: cp936 -*- 2 import numpy as np 3 import matplotlib.pyplot as plt 4 5 6 # 构造训练数据 7 x = np.arange(0., 10., 0.2) 8 m = len(x) # 训练数据点数目 9 x0 = np.full(m, 1.0) 10 input_data = np.vstack([x0, x]).T # 将偏置b作为权向量的第一个分量 11 target_data = 2 * x