Coursera - multi regression - notes

下一步plotData一大堆复杂逻辑

太复杂我放弃

matlab选择列的方法

m =5000

rand_indices = randperm(m);   #从m中随机排index

#rand_indices(1:100)  选择前100个,是一个一维数组

sel = X(rand_indices(1:100), :);

#X矩阵中可以这么选择行的原来

  

时间: 2024-11-05 12:38:22

Coursera - multi regression - notes的相关文章

【转载】STA 4273H Winter 2015 - Lectures

STA4273H Home   Lecture Schedule/Notes Assignments/Project Computing   Ruslan Salakhutdinov Homepage http://www.cs.toronto.edu/~rsalakhu/   STA 4273H Winter 2015 - Lectures Video Archive here. Lecture Schedule Lecture 1 -- Machine Learning:Introducti

大数据处理之道 (MATLAB 篇(二))

一:起因 (0)开始个人非常抵触MATLAB编程语言的,肯能是部分编程人员的通病 -- 学会c/c++或者java,就会鄙视其他的语言,懒得尝试其他语言.直到有一天--他发现,他或者她发现自己精通的这门语言实在是解决不了这个问题时,才做出改变. (1)最近一直在处理大数据,从MB ----> GB的变化,是一次质的飞跃,相应的工具也在变 从widows到linux,从单机单核 到 hadoop多节点的计算 (2)问题来了,面对海量的数据,如何从中挖掘实用的信息或者发现潜在的现象,可视化工具可能是

Logistic Regression & Regularization ----- Stanford Machine Learning(by Andrew NG)Course Notes

coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regression方法进行ctr的预测工作,因为当时主要使用的是成型的工具,对该算法本身并没有什么比较深入的认识,不过可以客观的感受到Logistic Regression的商用价值. Logistic Regression Model A. objective function       其中z的定义域是(-I

Linear Regression ----- Stanford Machine Learning(by Andrew NG)Course Notes

Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名词在后续课程中会频繁出现: Cost Function Linear Regression Gradient Descent Normal Equation Feature Scaling Mean normalization 损失函数 线性回归 梯度下降 正规方程 特征归一化 均值标准化 Mode

C++基本要点复习--------coursera程序设计实习(PKU)的lecture notes

因为一些特性复杂,很多时候也用不到一些特性,所以忘记了,算是随笔,也当作一个临时查找的手册.没有什么顺序,很杂. 1.构造函数通过函数重载的机制可以有多个(不同的构造函数,参数个数,或者参数类型不同.),但是析构函数只能有一个.当没有在代码中写明构造或析构函数时,编译器会自动生成缺省的构造或析构函数.构造函数和析构函数都无返回值.另外,析构函数必须无参数.没写复制(拷贝)构造函数,编译器也会自动生成缺省的复制构造函数.复制构造函数会生成一个临时隐藏的对象,在调用一个以类对象作为参数的函数和调用一

Coursera公开课机器学习:Linear Regression with multiple variables

多特征 实际上我们真正买过房子的都知道,在选择房子的时候,需要考虑的不仅仅是面积,地段.结构.房龄.邻里关系之类的都应该是考虑对象,所以前面几讲谈论的,单纯用面积来谈房价,不免失之偏颇. 多考虑些特性 我们加入一些特性来考虑房价问题: 符号解释 $n$:特性数目 $x ^{(i)}$:输入的第$i$个训练数据 $x ^{(i)} _j$:第$i$个训练数据的第$j$个特性 $h _\theta (x)$ 相应的,$h _\theta (x)$也就变了: $h _\theta (x) = \the

[机器学习] Coursera ML笔记 - 逻辑回归(Logistic Regression)

引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自Standford Andrew Ng老师在Coursera的教程以及UFLDL Tutorial,Stanford CS231n等在线课程和Tutorial,同时也参考了大量网上的相关资料(在后面列出). 前言 本文主要介绍逻辑回归的基础知识,文章小节安排如下: 1)逻辑回归定义 2)假设函数(Hypothesis function

Coursera机器学习-第三周-逻辑回归Logistic Regression

Classification and Representation 1. Classification Linear Regression (线性回归)考虑的是连续值([0,1]之间的数)的问题,而Logistic Regression(逻辑回归)考虑的是离散值(例如只能取0或1而不能取0到1之间的数)的问题.举个例子,你需要根据以往季度的电力数据,预测下一季度的电力数据,这个时候需要使用的是线性回归,因为这个值是连续的,而不是离散的.而当你需要判断这个人抽烟还是不抽烟的问题时,就需要使用逻辑回

Coursera台大机器学习课程笔记9 -- Logistic Regression

这一节课主要讲如何用logistic regression做分类. 在误差衡量问题上,选取了最大似然函数误差函数,这一段推导是难点. 接下来是如何最小化Ein,采用的是梯度下降法,这个比较容易. 参考:http://beader.me/mlnotebook/section3/logistic-regression.html http://www.cnblogs.com/ymingjingr/p/4330304.html