1. python 加载 caffe mean.binaryproto
#### mean_file #### proto_data = open(mean_filename, "rb").read() a = caffe.io.caffe_pb2.BlobProto.FromString(proto_data) mean = caffe.io.blobproto_to_array(a)[0]
2. python 加载caffe 图片输入
#### load input and configure preprocessing type 1 #### im = caffe.io.load_image("tmp.jpg") # 读进来是RGB格式和0~1 transformer = caffe.io.Transformer({‘data‘: net_full_conv.blobs[‘data‘].data.shape}) #transformer.set_mean(‘data‘, np.load(caffe_root + ‘python/caffe/imagenet/ilsvrc_2012_mean.npy‘).mean(1).mean(1)) transformer.set_transpose(‘data‘, (2, 0, 1)) # channel width(cols) height(cows) transformer.set_channel_swap(‘data‘, (2, 1, 0)) # 将RGB变换到BGR transformer.set_raw_scale(‘data‘, 255.0) # 缩放至0~255
#### load input and configure preprocessing type 2 #### cv_im = cv2.imread("tmp.jpg") transformer.set_transpose(‘data‘, (2, 0, 1)) # channel
3. python opencv
####python opencv#### img.shape[0] = img.rows = 高 img.shape[1] = img.cols = 宽 Python: dst = cv2.resize(src, NewShape[1], NewShape[0], interpolation = cv2.INTER_LINEAR) C++: resize(midImage, tmpImage, cv::Size(ratio*midImage.cols, ratio*midImage.rows), (0, 0), (0, 0), cv::INTER_AREA);
4. python Matplotlib
####python Matplotlib#### import matplotlib.pyplot as plt # plt 用于显示图片 import matplotlib.image as mpimg # mpimg 用于读取图片 import numpy as np lena = mpimg.imread(‘lena.png‘) # 读取和代码处于同一目录下的 lena.png # 此时 lena 就已经是一个 np.array 了,可以对它进行任意处理 lena.shape #(512, 512, 3) plt.imshow(lena) # 显示图片 plt.axis(‘off‘) # 不显示坐标轴 plt.show() fig = plt.figure() # 新图 0 plt.savefig() # 保存 plt.close(‘all‘) # 关闭图 0
时间: 2024-11-03 05:30:02