Number Sequence
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 697 Accepted Submission(s): 332
Special Judge
Problem Description
There is a special number sequence which has n+1 integers. For each number in sequence, we have two rules:
● ai ∈ [0,n]
● ai ≠ aj( i ≠ j )
For sequence a and sequence b, the integrating degree t is defined as follows(“⊕” denotes exclusive or):
t = (a0 ⊕ b0) + (a1 ⊕ b1) +···+ (an ⊕ bn)
(sequence B should also satisfy the rules described above)
Now give you a number n and the sequence a. You should calculate the maximum integrating degree t and print the sequence b.
Input
There are multiple test cases. Please process till EOF.
For each case, the first line contains an integer n(1 ≤ n ≤ 105), The second line contains a0,a1,a2,...,an.
Output
For each case, output two lines.The first line contains the maximum integrating degree t. The second line contains n+1 integers b0,b1,b2,...,bn. There is exactly one space between bi and bi+1(0
≤ i ≤ n - 1). Don’t ouput any spaces after bn.
Sample Input
4 2 0 1 4 3
Sample Output
20 1 0 2 3 4
随意写一个二进制数x=100100,总能找到唯一的一个数与它异或得到111111;对于每个N位二进制数,每次总使它与一个数异或得到11...11(N个1)。即为最优解,且唯一。
#include"stdio.h" #include"math.h" #include"string.h" #define LL __int64 #define N 100005 int a[N],p[N],b[N]; int fun(int x) { int t=1; while(t<=x) t*=2; return x^(t-1); } int main() { int i,n; while(scanf("%d",&n)!=-1) { for(i=0;i<=n;i++) scanf("%d",&a[i]); memset(p,-1,sizeof(p)); for(i=n;i>=0;i--) { if(p[i]!=-1) continue; int t=fun(i); p[t]=i; p[i]=t; } LL s=0; for(i=0;i<=n;i++) { b[i]=p[a[i]]; s+=a[i]^b[i]; } printf("%I64d\n",s); for(i=0;i<n;i++) printf("%d ",b[i]); printf("%d\n",b[n]); } return 0; }