〖Python〗-- 装饰器

【装饰器】

函数即对象

在python的世界里,函数和我们之前的[1,2,3],‘abc‘,8等一样都是对象,而且函数是最高级的对象(对象是类的实例化,可以调用相应的方法,函数是包含变量对象的对象)。

def foo():
    print(‘i am the foo‘)
    bar()

def bar():
    print(‘i am the bar‘)

foo()
# def bar():      #报错
#     print(‘i am the bar‘)

函数在内存的存储情况:

       图1

函数对象的调用仅仅比其它对象多了一个()而已!foo,bar与a,b一样都是个变量名。

那上面的问题也就解决了,只有函数加载到内存才可以被调用。

既然函数是对象,那么自然满足下面两个条件:

1. 其可以被赋给其他变量

def foo():
    print(‘foo‘)
bar=foo
bar()
foo()
print(id(foo),id(bar))  #4321123592 4321123592

2. 其可以被定义在另外一个函数内(作为参数&作为返回值),类似于整形,字符串等对象。

#*******函数名作为参数**********
def foo(func):
    print(‘foo‘)
    func()

def bar():
    print(‘bar‘)

foo(bar)

#*******函数名作为返回值*********

def foo():
    print(‘foo‘)
    return bar

def bar():
    print(‘bar‘)

b=foo()
b()

注意:这里说的函数都是指函数名,比如foo;而foo()已经执行函数了,foo()是什么类型取决于return的内容是什么类型!!!

另外,如果大家理解不了对象,那么就将函数理解成变量,因为函数对象总会由一个或多个变量引用,比如foo,bar。

函数的嵌套以及闭包

抛一个小问题:

def foo():
    print(‘foo‘)
    def bar():
        print(‘bar‘)
    # bar()
bar()

是的,bar就是一个变量名,有自己的作用域的。

Python允许创建嵌套函数。通过在函数内部def的关键字再声明一个函数即为嵌套:

#想执行inner函数,两种方法
def outer():
     x = 1
     def inner():
         print (x) # 1
     # inner() # 2
     return inner

# outer()
in_func=outer()
in_func()

两种调用方式有区别吗,不都是在外面调用inner吗?

in_func=outer()
in_func()
###########
inner()(已经加载到内存啦)

def outer():
     x = 1
     def inner():
         b=6
         print (x)
     return inner
#inner()#报错原因:找不到这个引用变量
in_func=outer()#这里其实就是一个变量赋值,将inner的引用对象赋值给in_func,类似于a=5,b=a一样
               #有同学会想直接赋值不行吗:in_func=inner? 哥,inner不还是找不到吗,对吧
in_func()

原因

def outer():
    x=1    #函数outer执行完毕即被销毁
print(x)    

既然这样,i()执行的时候outer函数已经执行完了,为什么inner还可以调用outer里的变量x呢?

因为:outer里return的inner是一个闭包函数,有x这个环境变量。

闭包

闭包(closure)是函数式编程的重要的语法结构。

定义:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure).

如上实例,inner就是内部函数,inner里引用了外部作用域的变量x(x在外部作用域outer里面,不是全局作用域),

则这个内部函数inner就是一个闭包。

再稍微讲究一点的解释是,闭包=函数块+定义函数时的环境,inner就是函数块,x就是环境,当然这个环境可以有很多,不止一个简单的x。

用途

# 用途1:当闭包执行完后,仍然能够保持住当前的运行环境。
# 比如说,如果你希望函数的每次执行结果,都是基于这个函数上次的运行结果。我以一个类似棋盘游戏的例子
# 来说明。假设棋盘大小为50*50,左上角为坐标系原点(0,0),我需要一个函数,接收2个参数,分别为方向
# (direction),步长(step),该函数控制棋子的运动。棋子运动的新的坐标除了依赖于方向和步长以外,
# 当然还要根据原来所处的坐标点,用闭包就可以保持住这个棋子原来所处的坐标。

origin = [0, 0] # 坐标系统原点
legal_x = [0, 50] # x轴方向的合法坐标
legal_y = [0, 50] # y轴方向的合法坐标
def create(pos=origin):
 def player(direction,step):
  # 这里应该首先判断参数direction,step的合法性,比如direction不能斜着走,step不能为负等
  # 然后还要对新生成的x,y坐标的合法性进行判断处理,这里主要是想介绍闭包,就不详细写了。
  new_x = pos[0] + direction[0]*step
  new_y = pos[1] + direction[1]*step
  pos[0] = new_x
  pos[1] = new_y
  #注意!此处不能写成 pos = [new_x, new_y],原因在上文有说过
  return pos
 return player

player = create() # 创建棋子player,起点为原点
print (player([1,0],10)) # 向x轴正方向移动10步
print (player([0,1],20)) # 向y轴正方向移动20步
print (player([-1,0],10)) # 向x轴负方向移动10步
用途2:闭包可以根据外部作用域的局部变量来得到不同的结果,这有点像一种类似配置功能的作用,我们可以
# 修改外部的变量,闭包根据这个变量展现出不同的功能。比如有时我们需要对某些文件的特殊行进行分析,先
# 要提取出这些特殊行。

def make_filter(keep):
 def the_filter(file_name):
  file = open(file_name)
  lines = file.readlines()
  file.close()
  filter_doc = [i for i in lines if keep in i]
  return filter_doc
 return the_filter

# 如果我们需要取得文件"result.txt"中含有"pass"关键字的行,则可以这样使用例子程序
filter = make_filter("pass")
filter_result = filter("result.txt")

装饰器概念

装饰器本质上是一个函数,该函数用来处理其他函数,它可以让其他函数在不需要修改代码的前提下增加额外的功能,装饰器的返回值也是一个函数对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等应用场景。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。

业务生产中大量调用的函数:

def foo():
    print(‘hello foo‘)
foo()

现在有一个新的需求,希望可以记录下函数的执行时间,于是在代码中添加日志代码:

import time
def foo():
    start_time=time.time()
    print(‘hello foo‘)
    time.sleep(3)
    end_time=time.time()
    print(‘spend %s‘%(end_time-start_time))

foo()

bar()、bar2()也有类似的需求,怎么做?再在bar函数里调用时间函数?这样就造成大量雷同的代码,为了减少重复写代码,我们可以这样做,重新定义一个函数:专门设定时间:

import time
def show_time(func):
    start_time=time.time()
    func()
    end_time=time.time()
    print(‘spend %s‘%(end_time-start_time))

def foo():
    print(‘hello foo‘)
    time.sleep(3)

show_time(foo)

逻辑上不难理解,而且运行正常。 但是这样的话,你基础平台的函数修改了名字,容易被业务线的人投诉的,因为我们每次都要将一个函数作为参数传递给show_time函数。而且这种方式已经破坏了原有的代码逻辑结构,之前执行业务逻辑时,执行运行foo(),但是现在不得不改成show_time(foo)。那么有没有更好的方式的呢?当然有,答案就是装饰器。 

简单装饰器

if  foo()==show_time(foo) :问题解决!

所以,我们需要show_time(foo)返回一个函数对象,而这个函数对象内则是核心业务函数:执行func()与装饰函数时间计算,修改如下:

import time

def show_time(func):
    def wrapper():
        start_time=time.time()
        func()
        end_time=time.time()
        print(‘spend %s‘%(end_time-start_time))

    return wrapper

def foo():
    print(‘hello foo‘)
    time.sleep(3)

foo=show_time(foo)
foo()

函数show_time就是装饰器,它把真正的业务方法func包裹在函数里面,看起来像foo被上下时间函数装饰了。在这个例子中,函数进入和退出时 ,被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。 

@符号是装饰器的语法糖,在定义函数的时候使用,避免再一次赋值操作

import time

def show_time(func):
    def wrapper():
        start_time=time.time()
        func()
        end_time=time.time()
        print(‘spend %s‘%(end_time-start_time))

    return wrapper

@show_time   #foo=show_time(foo)
def foo():
    print(‘hello foo‘)
    time.sleep(3)

@show_time  #bar=show_time(bar)
def bar():
    print(‘in the bar‘)
    time.sleep(2)

foo()
print(‘***********‘)
bar()

如上所示,这样我们就可以省去bar = show_time(bar)这一句了,直接调用bar()即可得到想要的结果。如果我们有其他的类似函数,我们可以继续调用装饰器来修饰函数,而不用重复修改函数或者增加新的封装。这样,我们就提高了程序的可重复利用性,并增加了程序的可读性。

这里需要注意的问题:  foo=show_time(foo)其实是把wrapper引用的对象引用给了foo,而wrapper里的变量func之所以可以用,就是因为wrapper是一个闭包函数。

key:

@show_time帮我们做的事情就是当我们执行业务逻辑foo()时,执行的代码由粉框部分转到蓝框部分,仅此而已!

装饰器在Python使用如此方便都要归因于Python的函数能像普通的对象一样能作为参数传递给其他函数,可以被赋值给其他变量,可以作为返回值,可以被定义在另外一个函数内。

带参数的被装饰函数

import time

def show_time(func):

    def wrapper(a,b):
        start_time=time.time()
        func(a,b)
        end_time=time.time()
        print(‘spend %s‘%(end_time-start_time))

    return wrapper

@show_time   #add=show_time(add)
def add(a,b):

    time.sleep(1)
    print(a+b)

add(2,4)
import time

def show_time(func):

    def wrapper(a,b):
        start_time=time.time()
        ret=func(a,b)
        end_time=time.time()
        print(‘spend %s‘%(end_time-start_time))
        return ret

    return wrapper

@show_time   #add=show_time(add)
def add(a,b):

    time.sleep(1)
    return a+b

print(add(2,5))

不定长参数

#***********************************不定长参数
import time

def show_time(func):

    def wrapper(*args,**kwargs):
        start_time=time.time()
        func(*args,**kwargs)
        end_time=time.time()
        print(‘spend %s‘%(end_time-start_time))

    return wrapper

@show_time   #add=show_time(add)
def add(*args,**kwargs):

    time.sleep(1)
    sum=0
    for i in args:
        sum+=i
    print(sum)

add(2,4,8,9)

带参数的装饰器

装饰器还有更大的灵活性,例如带参数的装饰器:在上面的装饰器调用中,比如@show_time,该装饰器唯一的参数就是执行业务的函数。装饰器的语法允许我们在调用时,提供其它参数,比如@decorator(a)。这样,就为装饰器的编写和使用提供了更大的灵活性。

import time

def time_logger(flag=0):

    def show_time(func):

            def wrapper(*args,**kwargs):
                start_time=time.time()
                func(*args,**kwargs)
                end_time=time.time()
                print(‘spend %s‘%(end_time-start_time))

                if flag:
                    print(‘将这个操作的时间记录到日志中‘)

            return wrapper

    return show_time

@time_logger(3)
def add(*args,**kwargs):
    time.sleep(1)
    sum=0
    for i in args:
        sum+=i
    print(sum)

add(2,7,5)

@time_logger(3) 做了两件事:

(1)time_logger(3):得到闭包函数show_time,里面保存环境变量flag

(2)@show_time   :add=show_time(add)

上面的time_logger是允许带参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器(一个含有参数的闭包函数)。当我 们使用@time_logger(3)调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。

多层装饰器

def makebold(fn):
    def wrapper():
        return "<b>" + fn() + "</b>"
    return wrapper

def makeitalic(fn):
    def wrapper():
        return "<i>" + fn() + "</i>"
    return wrapper

@makebold
@makeitalic
def hello():
    return "hello alvin"

hello()

过程:

类装饰器

再来看看类装饰器,相比函数装饰器,类装饰器具有灵活度大、高内聚、封装性等优点。使用类装饰器还可以依靠类内部的__call__方法,当使用 @ 形式将装饰器附加到函数上时,就会调用此方法。

import time

class Foo(object):
    def __init__(self, func):
        self._func = func

    def __call__(self):
        start_time=time.time()
        self._func()
        end_time=time.time()
        print(‘spend %s‘%(end_time-start_time))

@Foo  #bar=Foo(bar)

def bar():

    print (‘bar‘)
    time.sleep(2)

bar()    #bar=Foo(bar)()>>>>>>>没有嵌套关系了,直接active Foo的 __call__方法

##----------------------------------------foo函数先加载到内存,然后foo变量指向新的引用,所以递归里的foo是wrapper函数对象
# def show_time(func):
#
#     def wrapper(n):
#         ret=func(n)
#         print("hello,world")
#         return ret
#     return wrapper
#
# @show_time# foo=show_time(foo)
# def foo(n):
#     if n==1:
#         return 1
#     return n*foo(n-1)
# print(foo(6))

########################
def show_time(func):

    def wrapper(n):
        ret=func(n)
        print("hello,world")
        return ret
    return wrapper

@show_time# foo=show_time(foo)
def foo(n):
    def _foo(n):
        if n==1:
            return 1
        return n*_foo(n-1)
    return _foo(n)
print(foo(6))

迭代函数被装饰

时间: 2024-11-05 22:24:30

〖Python〗-- 装饰器的相关文章

5.初识python装饰器 高阶函数+闭包+函数嵌套=装饰器

一.什么是装饰器? 实际上装饰器就是个函数,这个函数可以为其他函数提供附加的功能. 装饰器在给其他函数添加功能时,不会修改原函数的源代码,不会修改原函数的调用方式. 高阶函数+函数嵌套+闭包 = 装饰器 1.1什么是高阶函数? 1.1.1函数接收的参数,包涵一个函数名. 1.1.2 函数的返回值是一个函数名. 其实这两个条件都很好满足,下面就是一个高阶函数的例子. def test1(): print "hamasaki ayumi" def test2(func): return t

python装饰器通俗易懂的解释!

python装饰器 刚刚接触python的装饰器,简直懵逼了,直接不懂什么意思啊有木有,自己都忘了走了多少遍Debug,查了多少遍资料,猜有点点开始明白了.总结了一下解释得比较好的,通俗易懂的来说明一下: 小P闲来无事,随便翻看自己以前写的一些函数,忽然对一个最最最基础的函数起了兴趣: 1 def sum1(): 2 sum = 1 + 2 3 print(sum) 4 sum1() 此时小P想看看这个函数执行用了多长时间,所以写了几句代码插进去了: 1 import time 2 3 def

python装饰器1

第八步:让装饰器带 类 参数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 # -*- coding:gbk -*- '''示例8: 装饰器带类参数''' class locker:     def __init__(self):         print("locker.__init__() should be not called.")   

Python装饰器由浅入深

装饰器的功能在很多语言中都有,名字也不尽相同,其实它体现的是一种设计模式,强调的是开放封闭原则,更多的用于后期功能升级而不是编写新的代码.装饰器不光能装饰函数,也能装饰其他的对象,比如类,但通常,我们以装饰函数为例子介绍其用法.要理解在Python中装饰器的原理,需要一步一步来.本文尽量描述得浅显易懂,从最基础的内容讲起. (注:以下使用Python3.5.1环境) 一.Python的函数相关基础 第一,必须强调的是python是从上往下顺序执行的,而且碰到函数的定义代码块是不会立即执行它的,只

python 装饰器学习(decorator)

最近看到有个装饰器的例子,没看懂, #!/usr/bin/python class decorator(object): def __init__(self,f): print "initial decorator" f() def __call__(self): print "call decorator" @decorator def fun(): print "in the fun" print "after " fun

【转】九步学习python装饰器

本篇日志来自:http://www.cnblogs.com/rhcad/archive/2011/12/21/2295507.html 纯转,只字未改.只是为了学习一下装饰器.其实现在也是没有太看明白,对于装饰器我就是用的时候找例子,能蒙对,但是用过之后一段时间就忘了.还是用的少.有空应该好好看一看的,包括闭包.对于各种现代编程语言来说闭包都是很重要的.在这里先谢过原作者,如有侵权请告知. =-=-=-=-=-=-=-=-=-=-一条不怎么华丽的分隔线-=-=-=-=-=-=-=-=-=-= 这

【Python之旅】第四篇(一):Python装饰器

有时候拿到一个程序接口,需要对其进行扩展,但是又不能修改原来接口的源代码,这时候就需要使用装饰器了. 有下面一个小程序,假如是别人提供给我们的调用接口: import time def sayHi():         time.sleep(1)         print 'Hello, I am xpleaf.' 一般情况下,如果想要计算该程序的执行时间(因为有可能要对该接口进行某些性能上的测试),就需要把以上接口修改为下面这样,同时执行一下: 程序代码: import time def s

python装饰器原理及相关操作

python装饰器,简单的说就是用于操作底层代码的代码,在不改变底层代码函数的情况下对底层代码进行验证操作等 首先,必须知,道调用func和func的区别,分别为返回函数所在的内存地址和调用该函数,输出执行结果,例如: def func(): print("欢迎光临!!!") print("返回函数所在的内存地址:",func) func() 列举一个简单的web页面调用例子 1 #做登录验证 2 def login(func): 3 print("登录成

python装饰器学习笔记

什么是python装饰器? 装饰器其实也就是一个函数,一个用来包装函数的函数,返回一个修改之后的函数对象,将其重新赋值原来的标识符,并永久丧失对原始函数对象的访问. eg:当需要在Func1和Func2中加一样的功能时,可以在outer中添加一次就可以完成全部函数的添加.装饰器与函数建立连接的方式是在函数的前一行用@+装饰器名称来完成.并且在装饰器中一定要返回被装饰的对象 def outer(fun):     def wrapper():         print '验证'         

python 装饰器及标准库functools中的wraps

最近在看 flask的视图装饰器 时,忽然想起预(复)习一下python的装饰器. 这里有一篇比较好的讲解装饰器的书写的 Python装饰器学习(九步入门) . 这里不单独记录装饰器的书写格式了,重点是工作流程. 首先常见的 装饰器 格式就是通过@语法糖,简便的写法,让流程有些不太清楚. 装饰器不带参数的情况下: def deco(func):     def _deco():         print("before myfunc() called.")         func(