HDU 2686 Matrix 3376 Matrix Again(费用流)

HDU 2686 Matrix

题目链接

3376 Matrix Again

题目链接

题意:这两题是一样的,只是数据范围不一样,都是一个矩阵,从左上角走到右下角在从右下角走到左上角能得到最大价值

思路:拆点,建图,然后跑费用流即可,不过HDU3376这题,极限情况是300W条边,然后卡时间过了2333

代码:

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;

const int MAXNODE = 600 * 600 * 2 + 5;
const int MAXEDGE = 4 * MAXNODE;
typedef int Type;
const Type INF = 0x3f3f3f3f;

struct Edge {
	int u, v;
	Type cap, flow, cost;
	Edge() {}
	Edge(int u, int v, Type cap, Type flow, Type cost) {
		this->u = u;
		this->v = v;
		this->cap = cap;
		this->flow = flow;
		this->cost = cost;
	}
};

struct MCFC {
	int n, m, s, t;
	Edge edges[MAXEDGE];
	int first[MAXNODE];
	int next[MAXEDGE];
	int inq[MAXNODE];
	Type d[MAXNODE];
	int p[MAXNODE];
	Type a[MAXNODE];

	void init(int n) {
		this->n = n;
		memset(first, -1, sizeof(first));
		m = 0;
	}

	void add_Edge(int u, int v, Type cap, Type cost) {
		edges[m] = Edge(u, v, cap, 0, cost);
		next[m] = first[u];
		first[u] = m++;
		edges[m] = Edge(v, u, 0, 0, -cost);
		next[m] = first[v];
		first[v] = m++;
	}

	bool bellmanford(int s, int t, Type &flow, Type &cost) {

		for (int i = 0; i < n; i++) d[i] = INF;
		memset(inq, false, sizeof(inq));
		d[s] = 0; inq[s] = true; p[s] = s; a[s] = INF;
		queue<int> Q;
		Q.push(s);
		while (!Q.empty()) {
			int u = Q.front(); Q.pop();
			inq[u] = false;
			for (int i = first[u]; i != -1; i = next[i]) {
				Edge& e = edges[i];
				if (e.cap > e.flow && d[e.v] > d[u] + e.cost) {
					d[e.v] = d[u] + e.cost;
					p[e.v] = i;
					a[e.v] = min(a[u], e.cap - e.flow);
					if (!inq[e.v]) {Q.push(e.v); inq[e.v] = true;}
				}
			}
		}
		if (d[t] == INF) return false;
		flow += a[t];
		cost += d[t] * a[t];
		int u = t;
		while (u != s) {
			edges[p[u]].flow += a[t];
			edges[p[u]^1].flow -= a[t];
			u = edges[p[u]].u;
		}
		return true;
	}

	Type Mincost(int s, int t) {
		Type flow = 0, cost = 0;
		while (bellmanford(s, t, flow, cost));
		return cost;
	}
} gao;

const int N = 600 * 600 + 5;
const int d[2][2] = {1, 0, 0, 1};

int n, num[N];

int get(int now, int k) {
	int x = now / n;
	int y = now % n;
	x += d[k][0];
	y += d[k][1];
	if (x < 0 || x >= n || y < 0 || y >= n) return -1;
	return x * n + y;
}

int main() {
	while (~scanf("%d", &n)) {
		gao.init(n * n * 2);
		for (int i = 0; i < n * n; i++) {
			scanf("%d", &num[i]);
			if (i == 0) gao.add_Edge(i, i + n * n, 2, -num[i]);
			else if (i == n * n - 1) gao.add_Edge(i, i + n * n, 2, -num[i]);
			else gao.add_Edge(i, i + n * n, 1, -num[i]);
		}
		for (int i = 0; i < n * n; i++) {
			for (int j = 0; j < 2; j++) {
				int next = get(i, j);
				if (next < 0 || next >= n * n) continue;
				gao.add_Edge(i + n * n, next, 2, 0);
			}
		}
		printf("%d\n", -gao.Mincost(0, n * n * 2 - 1) - num[0] - num[n * n - 1]);
	}
	return 0;
}
时间: 2024-11-24 02:36:20

HDU 2686 Matrix 3376 Matrix Again(费用流)的相关文章

Acdream 1171 Matrix sum 上下界费用流

题目链接:点击打开链接 Matrix sum Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatisticNext Problem Problem Description sweet和zero在玩矩阵游戏,sweet画了一个N * M的矩阵,矩阵的每个格子有一个整数.zero给出N个数Ki,和M个数Kj,zero要求sweet选出一些数,满足从第 i 行至少选出了Ki

POJ 3422 Kaka&#39;s Matrix Travels(网络流之费用流)

题目地址:POJ 3422 方法是对每个点i拆点成i'和i'',然后对每个i'和i''连一条费用为该点值,流量为1的边,再连1条费用为0,流量为k-1的边. 然后对每个点与右边下边相邻的点连边,流量均为INF,费用均为0.需要再建一源点与汇点,对于k次只需要在源点与汇点处进行限制即可. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #inclu

HDU 4406 GPA(网络流-最大费用流)

GPA Problem Description GPA(Grade-Point Average) is one way to measure students' academic performance in PKU. Each course has an integer credit, ranges from 1 to 99. For each course, you will get a score at the end of the semester, which is an intege

hdu 3376 Matrix Again【最大费用流】

Matrix Again Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total Submission(s): 2947    Accepted Submission(s): 860 Problem Description Starvae very like play a number game in the n*n Matrix. A positive integer

HDU 2686 (双线程) Matrix

这也是当初卡了很久的一道题 题意:从左上角的格子出发选一条路径到右上角然后再回到左上角,而且两条路径除了起点和终点不能有重合的点.问所经过的格子中的最大和是多少 状态设计:我们可以认为是从左上角出发了两条路径,然后同时到达右下角.容易看出,第k个阶段所有可能到达的格子构成一条斜线而且满足x1 + y1 = x2 + y2 = k + 1 dp[k][x1][x2]表示第k阶段两条路分别到达(x1, y1) (x2, y2)所能取得的最大值(y1 y2根据上面的等量关系来计算),如果x1 = x2

hdu 5383 Yu-Gi-Oh!(游戏王! + 费用流)

hdu 5383 Yu-Gi-Oh! Problem Description "Yu-Gi-Oh!", also known as "Dueling Monsters", is a popular trading card game which has nearly 20 years history. Next year, YGO will reach its 20th birthday. Stilwell has n monsters on the desk, e

hdu 1853(拆点判环+费用流)

Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total Submission(s): 2257    Accepted Submission(s): 1148 Problem Description There are N cities in our country, and M one-way roads connecting them. Now L

POJ 2135 Farm Tour &amp;&amp; HDU 2686 Matrix &amp;&amp; HDU 3376 Matrix Again 费用流求来回最短路

累了就要写题解,最近总是被虐到没脾气. 来回最短路问题貌似也可以用DP来搞,不过拿费用流还是很方便的. 可以转化成求满流为2 的最小花费.一般做法为拆点,对于 i 拆为2*i 和 2*i+1,然后连一条流量为1(花费根据题意来定) 的边来控制每个点只能通过一次. 额外添加source和sink来控制满流为2. 代码都雷同,以HDU3376为例. #include <algorithm> #include <iostream> #include <cstring> #in

hdu 2686 Matrix &amp;&amp; hdu 3367 Matrix Again (最大费用最大流)

Matrix Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1394    Accepted Submission(s): 758 Problem Description Yifenfei very like play a number game in the n*n Matrix. A positive integer number