超松弛迭代法

雅克比超松弛法(Jacobi Over Relaxation)

逐次超松弛法(Successive Over Relaxation)

时间: 2024-10-05 23:37:07

超松弛迭代法的相关文章

线性方程组的迭代解法——超松弛迭代法

1.代码 %%超松弛迭代法(此方法适用于大型稀疏矩阵但不适合与病态方程的解 %%线性方程组M*X = b,M是方阵,X0是初始解向量,epsilon是控制精度,omiga是松弛因子 function OIM = Overrelaxation_iterative_method(M,b,X0,epsilon) [m,n] = size(M); d = diag(M);L = zeros(m,n);U = zeros(m,n);D = zeros(m,n);eps = floor(abs(log(ep

求解线性方程组的三种基本迭代法

前言 在实际项目的一些矩阵运算模块中,往往需要对线性方程组进行求解以得到最终结果. 然而,你无法让计算机去使用克莱默法则或者高斯消元法这样的纯数学方法来进行求解. 计算机解决这个问题的方法是迭代法.本文将介绍三种最为经典的迭代法并用经典C++源代码实现之. 迭代法简介 从解的某个近似值出发,通过构造一个无穷序列去逼近精确解的方法. 雅克比迭代法 计算流程: 1. 初始化系数矩阵等计算环境 2. 设置精度控制和迭代次数控制变量 3. 采用如下式子进行迭代计算: 4. 循环执行 3,若(条件a)当前

认识数学各个分支

数论 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0.它们和起来叫做整数. 对于整数可以施行加.减.乘.除四种运算,叫做四则运算.其中加法.减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行.也就是说,任意两个或两个以上的整数相加.相减.相乘的时候,它们的和.差.积仍然是一个整数.但整数之间的除法在整数范围内并不一定能够无阻碍地进行. 人们在对整数进行运算的应用和研究中,逐步

线性方程组之迭代法篇

不管哪一种数值算法,其设计原理都是将复杂转化为简单的重复,或者说,通过简单的重复生成复杂,在算法设计和算法实现过程中,重复就是力量[1].                                 ----题记 一般地,线性方程组可以表达为                                                                                   Ax = b其中,A称为系数矩阵,b称为右端项,x为待求的未知数向量.       迭代

牛顿迭代法求解平方根

牛顿迭代法求解平方根 2015-05-16 10:30 2492人阅读 评论(1) 收藏 举报 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 一个实例 迭代简介 牛顿迭代法 牛顿迭代法简介 简单推导 泰勒公式推导 延伸与应用 一个实例 //java实现的sqrt类和方法 public class sqrt { public static double sqrt(double n) { if (n<0) return Double.NaN; double err = 1e

C#跳转语句 迭代法 穷举法

一.跳转语句 break & continue break:跳出循环,终止此循环,不管下面还有多少次,全部跳过. string a=" ", for (int i=1;i<=10;I++) { if(i==5) { break; } a += i +",": } Console.WriteLine(a); 输出结果为 1,2,3,4,5 continue:终止此次循环,直接开始下次循环. string a=" ", for (int

经典算法:牛顿迭代法求平方根

//牛顿迭代法求平方根 1 double mysqrt(double num) 2 { 3 double x = num/2; 4 double y = 0; 5 do{ 6 x = x/2+num/(2*x); 7 y = x*x-num; 8 if(y<0) y = -y; 9 } while(y>0.0001); 10 return x; 11 } 12 int main(int argc, char* argv[]) 13 { 14 printf("%.3f",my

51nod 1166 大数开平方(高精度+牛顿迭代法)

分析:直接用二分还是会T,用更快的牛顿迭代法.把问题转化为求x^2-n=0的根,假设解为x0,当前解为x且x^2-n>0,在(x,x^2-n)处作切线,与x轴交点横坐标为新的x,然后迭代即可,比二分法快,但是貌似只能用在凹函数或凸函数上.. java水高精度真是666... 1 import java.io.*; 2 import java.util.*; 3 import java.math.BigInteger; 4 public class Main { 5 public static v

牛顿迭代法(Newton&#39;s Method)

牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.但是,这一方法在牛顿生前并未公开发表. 牛顿法的作用是使用迭代的方法来求解函数方程的根.简单地说,牛顿法就是不断求取切线的过程. 对于形如f(x)=0的方程,首先任意估算一个解x0,再把该估计值代入原方程中.由于一般不会正好选择到正确的解,所以有f(x)=a.这时计算函数在x0处的斜率,和这条斜率与x轴的交点x1. f(x)=0中精确解的意义是,当取得解的时候,函数值为零(即f(x)的