codeforces 570 D Tree Requests

题意:给出一棵树。每一个结点都有一个字母,有非常多次询问,每次询问。以结点v为根的子树中高度为h的后代是否可以经过调整变成一个回文串。

做法:

推断能否够构成一个回文串的话,仅仅须要知道是否有大于一个的奇数数目的字母就可以。为了非常快的訪问到一个区间。记录前缀和就可以。为了省内存,状压奇偶就可以。

为了非常快的找到以结点v为根的子树中高度为h的后代,须要dfs整棵树。然后记录每一个结点第一次訪问它的时间戳以及离开它的时间戳,就能够二分出来。

为了省内存,能够离线处理询问。

#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<iostream>
#include<algorithm>
#include<bitset>
#include<climits>
#include<list>
#include<iomanip>
#include<stack>
#include<set>
#include<bitset>
using namespace std;
int head[500010],tail;
struct Edge
{
	int to,next;
}edge[500010];
void add(int from,int to)
{
	edge[tail].to=to;
	edge[tail].next=head[from];
	head[from]=tail++;
}
int in[500010],ot[500010];
int cnt;
struct node
{
	int id,tm;
	node(){}
	node(int id,int tm)
	{
		this->id=id;
		this->tm=tm;
	}
	bool operator <(node a)const
	{
		return tm<a.tm;
	}
};
vector<node>bx[500010];
void dfs(int from,int step)
{
	in[from]=++cnt;
	bx[step].push_back(node(from,cnt));
	for(int i=head[from];i!=-1;i=edge[i].next)
	{
		int to=edge[i].to;
		dfs(to,step+1);
	}
	ot[from]=++cnt;
}
bool num[500010][26];
char s[500010];
void create(int h)
{
	int n=bx[h].size();
	for(int i=0;i<n;i++)
	{
		if(i==0)
		{
			for(int j=0;j<26;j++)
				num[i][j]=0;
		}
		else
		{
			for(int j=0;j<26;j++)
				num[i][j]=num[i-1][j];
		}
		int id=bx[h][i].id-1;
		num[i][s[id]-‘a‘]^=1;
	}
}
bool work(int v,int h)
{
	if(bx[h].empty())
		return 1;
	int l=upper_bound(bx[h].begin(),bx[h].end(),node(-1,in[v]))-bx[h].begin();
	if(l==bx[h].size()||bx[h][l].tm>ot[v])
		return 1;
	int r=lower_bound(bx[h].begin(),bx[h].end(),node(-1,ot[v]))-bx[h].begin();
	l--;r--;
	bool flag=0;
	for(int i=0;i<26;i++)
	{
		bool t;
		if(l<0)
			t=num[r][i];
		else
			t=(num[l][i]^num[r][i]);
		if(t&1)
		{
			if(flag)
				return 0;
			flag=1;
		}
	}
	return 1;
}
struct Q
{
	int id,v,h;
	bool operator <(Q a)const
	{
		return h<a.h;
	}
}q[500010];
bool ans[500010];
int main()
{
	int n,m;
	scanf("%d%d",&n,&m);
	memset(head,-1,sizeof(head));
	for(int i=2;i<=n;i++)
	{
		int p;
		scanf("%d",&p);
		add(p,i);
	}
	scanf("%s",s);
	dfs(1,1);
	for(int i=0;i<m;i++)
	{
		scanf("%d%d",&q[i].v,&q[i].h);
		q[i].id=i;
	}
	sort(q,q+m);
	int p=-1;
	for(int i=0;i<m;i++)
	{
		if(q[i].h!=p)
		{
			p=q[i].h;
			create(p);
		}
		ans[q[i].id]=work(q[i].v,q[i].h);
	}
	for(int i=0;i<m;i++)
		if(ans[i])
			puts("Yes");
		else
			puts("No");
}

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Roman planted a tree consisting of n vertices. Each vertex contains a lowercase English letter. Vertex 1 is
the root of the tree, each of then?-?1 remaining vertices has a parent in
the tree. Vertex is connected with its parent by an edge. The parent of vertex i is vertex pi,
the parent index is always less than the index of the vertex (i.e., pi?<?i).

The depth of the vertex is the number of nodes on the path from the root to v along
the edges. In particular, the depth of the root is equal to 1.

We say that vertex u is in the subtree of vertex v,
if we can get from u to v,
moving from the vertex to the parent. In particular, vertex v is in its subtree.

Roma gives you m queries, the i-th
of which consists of two numbers vihi.
Let‘s consider the vertices in the subtree vi located
at depthhi.
Determine whether you can use the letters written at these vertices to make a string that is a palindrome. The letters that are written in the vertexes, can be rearranged in any order to make
a palindrome, but all letters should be used.

Input

The first line contains two integers nm (1?≤?n,?m?≤?500?000)
— the number of nodes in the tree and queries, respectively.

The following line contains n?-?1 integers p2,?p3,?...,?pn —
the parents of vertices from the second to the n-th (1?≤?pi?<?i).

The next line contains n lowercase English letters, the i-th
of these letters is written on vertex i.

Next m lines describe the queries, the i-th
line contains two numbers vihi (1?≤?vi,?hi?≤?n)
— the vertex and the depth that appear in the i-th query.

Output

Print m lines. In the i-th
line print "Yes" (without the quotes), if in the i-th
query you can make a palindrome from the letters written on the vertices, otherwise print "No" (without the quotes).

Sample test(s)

input

6 5
1 1 1 3 3
zacccd
1 1
3 3
4 1
6 1
1 2

output

Yes
No
Yes
Yes
Yes

Note

String s is a palindrome if reads the same from left to right and
from right to left. In particular, an empty string is a palindrome.

Clarification for the sample test.

In the first query there exists only a vertex 1 satisfying all the conditions, we can form a palindrome "z".

In the second query vertices 5 and 6 satisfy condititions, they contain letters "с" and "d"
respectively. It is impossible to form a palindrome of them.

In the third query there exist no vertices at depth 1 and in subtree of 4. We may form an empty palindrome.

In the fourth query there exist no vertices in subtree of 6 at depth 1. We may form an empty palindrome.

In the fifth query there vertices 2, 3 and 4 satisfying all conditions above, they contain letters "a", "c"
and "c". We may form a palindrome "cac".

时间: 2024-10-14 21:50:40

codeforces 570 D Tree Requests的相关文章

codeforces 570 D. Tree Requests (dfs)

题目链接: 570 D. Tree Requests 题目描述: 给出一棵树,有n个节点,1号节点为根节点深度为1.每个节点都有一个字母代替,问以结点x为根的子树中高度为h的后代是否能够经过从新排序变成一个回文串? 解题思路: 判断是不是回文串,可以统计集合中出现过的字母的个数,出现奇数次的字母个数小于1,即为回文串,否则不是.所以我们可以使用状压统计当前区间中字母出现的奇偶次数. 对于如何快速的求出区间,先dfs整棵树,标记下来每个节点进栈的时间和出栈的时间,然后把高度一样的点按照进栈时间顺序

codeforces 570 D. Tree Requests 树状数组+dfs搜索序

链接:http://codeforces.com/problemset/problem/570/D D. Tree Requests time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Roman planted a tree consisting of n vertices. Each vertex contains a low

CF 570 D. Tree Requests

D. Tree Requests http://codeforces.com/problemset/problem/570/D 题意: 一个以1为根的树,每个点上有一个字母(a-z),每次询问一个子树内深度为h的点是否可以构成回文串.(深度是到1的深度,没有也算,空回文串) 分析: dsu on tree.询问子树信息. 判断是否构成回文:出现奇数次的字符小于等于1个. 代码: 1 #include<cstdio> 2 #include<algorithm> 3 #include&

Codeforces 570D TREE REQUESTS dfs序+树状数组 异或

http://codeforces.com/problemset/problem/570/D Tree Requests time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Roman planted a tree consisting of?n?vertices. Each vertex contains a lowercase

Codeforces 570D Tree Requests(Dsu On the Tree)

题目链接 Tree Requests 1 #include <bits/stdc++.h> 2 3 using namespace std; 4 5 #define rep(i, a, b) for (int i(a); i <= (b); ++i) 6 7 typedef long long LL; 8 9 const int N = 500010; 10 const int A = 31; 11 12 int cntf[N], sz[N], h[N]; 13 vector <i

Codeforces 570D TREE REQUESTS dfs序+树状数组

链接 题解链接:点击打开链接 题意: 给定n个点的树,m个询问 下面n-1个数给出每个点的父节点,1是root 每个点有一个字母 下面n个小写字母给出每个点的字母. 下面m行给出询问: 询问形如 (u, deep) 问u点的子树中,距离根的深度为deep的所有点的字母能否在任意排列后组成回文串,能输出Yes. 思路:dfs序,给点重新标号,dfs进入u点的时间戳记为l[u], 离开的时间戳记为r[u], 这样对于某个点u,他的子树节点对应区间都在区间 [l[u], r[u]]内. 把距离根深度相

Codeforces Round #316 (Div. 2) D. Tree Requests 树 离线在线 算法

D. Tree Requests time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Roman planted a tree consisting of n vertices. Each vertex contains a lowercase English letter. Vertex 1 is the root of the

Problem - D - Codeforces Fix a Tree

Problem - D - Codeforces  Fix a Tree 看完第一名的代码,顿然醒悟... 我可以把所有单独的点全部当成线,那么只有线和环. 如果全是线的话,直接线的条数-1,便是操作数. 如果有环和线,环被打开的同时,接入到线上.那就是线和环的总数-1. 如果只有环的话,把所有的环打开,互相接入,共需n次操作. #include <cstdio> #include <algorithm> using namespace std; const int maxn =

CodeForces - 383C Propagating tree(dfs + 线段树)

题目大意: 给出一棵树,树上每个节点都有权值,然后有两个操作. 1 x val 在结点x上加上一个值val,x的儿子加上 -val,x的儿子的儿子加上 - (-val),以此类推. 2 x 问x节点的值. 思路分析: 每个节点上加值都是给自己的儿子节点加,而且这个是颗树. 比如样例上的,如果你给node 1加一个值,那么五个节点都加. 再给node 2加个值,2的儿子节点也加了,之前给1加的值也要加到2号节点的儿子. 所以你会发现节点的儿子会存在一个从属的关系. 这样的话,我们可以把所有节点从新