EtherType

EtherType is a two-octet field in an Ethernet frame. It is used to indicate which protocol is encapsulated in the payload of an Ethernet Frame. The same field is also used to indicate the size of some Ethernet frames. EtherType was first defined by the Ethernet II framing standard, and later adapted for the IEEE 802.3 standard.

Overview

An Ethernet frame including the EtherType field. Each lower slot designates an octet; the EtherType is two octets long.

In modern implementations of Ethernet, the field within the Ethernet frame used to describe the EtherType also can be used to represent the size of the payload of the Ethernet Frame. Historically, depending on the type of Ethernet framing that was in use on an Ethernet segment, both interpretations were simultaneously valid, leading to potential ambiguity. Ethernet v2 framing considered these octets to represent EtherType while the original IEEE 802.3 framing considered these octets to represent the size of the payload in bytes.

In order to allow packets using Ethernet v2 framing and packets using the IEEE 802.3 framing to be used on the same Ethernet segment, a unifying standard (IEEE 802.3x-1997) was introduced that required that EtherType values be greater than or equal to 1536 (0x0600). That value was chosen because the maximum length (MTU) of the data field of an Ethernet 802.3 frame is 1500 bytes. Thus, values of 1500 and below for this field indicate that the field is used as the size of the payload of the Ethernet Frame while values of 1536 and above indicate that the field is used to represent EtherType. The interpretation of values 1501–1535, inclusive, is undefined.[1]

Jumbo frames

The size of the payload of non-standard jumbo frames, typically ~9000 Bytes long, falls within the range used by EtherType, creating a conflict. The proposition to resolve this conflict was to substitute the special EtherType 0x8870 when a length would otherwise be used.[2] However, the proposition was not accepted and it is defunct. The chair of IEEE 802.3 at the time, Geoff Thompson, responded to the draft outlining IEEE 802.3‘s official position and the reasons behind the position.[3] The draft authors also responded to the chair‘s letter, but no subsequent answer from the IEEE 802.3 has been recorded.[4] Currently, the value used for Ethertype in jumbo frames is not clear. The IEEE Registration Authority lists all the Ethertype values registered, and no reference to jumbo frames is found in the list.[5]

VLAN tagging


This section provides insufficient context for those unfamiliar with the subject. Please help improve the article with a good introductory style. (December 2015) (Learn how and when to remove this template message)

Insertion of the 802.1Q VLAN tag (four octets) into an Ethernet-II frame, with a typical VLAN arrangement of a TPID EtherType value of 0x8100. A QinQ arrangement would add another four octets tag containing two octets TPID using various EtherType values. Triple tagging QinQinQ has three four-octet tags besides the original 16-bit EtherType field.

With 802.1Q VLAN tagging and QinQ the sparse 16-bit EtherType is being completely used. The 16-bit EtherType not only tags the payload class, it also serves to help end any VLAN tagging or QinQ stacking. Via look-ahead peeking in streams, the 16-bit EtherType can help to confirm or package a QinQ 32+32+16=80-bit header between the 48-bit MAC addresses and the payload. Of those 80-bits only 32-bits are used for dynamic information. For a full 66-bit addressing system, 18 bits are needed beyond the MAC. Thus, additional EtherType values are required and used for Triple Tagging QinQinQ.

Inefficient and conservative use of a 16-bit Tag Protocol Identifier (TPID) on each four octets VLAN tag, followed by the trailing lone 16-bits creates a 48-bit signature that cannot easily be mistaken as part of the payload. Vendor implementations may avoid wasting bandwidth sending those 48-bits in proprietary link compression schemes. The EtherType usually does not contain any CRC or FCS information.

Examples

EtherType values for some notable protocols[6]
EtherType Protocol
0x0800 Internet Protocol version 4 (IPv4)
0x0806 Address Resolution Protocol (ARP)
0x0842 Wake-on-LAN[7]
0x22F3 IETF TRILL Protocol
0x6003 DECnet Phase IV
0x8035 Reverse Address Resolution Protocol
0x809B AppleTalk (Ethertalk)
0x80F3 AppleTalk Address Resolution Protocol (AARP)
0x8100 VLAN-tagged frame (IEEE 802.1Q) and Shortest Path Bridging IEEE 802.1aq[8]
0x8137 IPX
0x8204 QNX Qnet
0x86DD Internet Protocol Version 6 (IPv6)
0x8808 Ethernet flow control
0x8819 CobraNet
0x8847 MPLS unicast
0x8848 MPLS multicast
0x8863 PPPoE Discovery Stage
0x8864 PPPoE Session Stage
0x8870 Jumbo Frames (proposed)[2][3]
0x887B HomePlug 1.0 MME
0x888E EAP over LAN (IEEE 802.1X)
0x8892 PROFINET Protocol
0x889A HyperSCSI (SCSI over Ethernet)
0x88A2 ATA over Ethernet
0x88A4 EtherCAT Protocol
0x88A8 Provider Bridging (IEEE 802.1ad) & Shortest Path Bridging IEEE 802.1aq[9]
0x88AB Ethernet Powerlink[citation needed]
0x88CC Link Layer Discovery Protocol (LLDP)
0x88CD SERCOS III
0x88E1 HomePlug AV MME[citation needed]
0x88E3 Media Redundancy Protocol (IEC62439-2)
0x88E5 MAC security (IEEE 802.1AE)
0x88E7 Provider Backbone Bridges (PBB) (IEEE 802.1ah)
0x88F7 Precision Time Protocol (PTP) over Ethernet (IEEE 1588)
0x88FB Parallel Redundancy Protocol (PRP)
0x8902 IEEE 802.1ag Connectivity Fault Management (CFM) Protocol / ITU-T Recommendation Y.1731 (OAM)
0x8906 Fibre Channel over Ethernet (FCoE)
0x8914 FCoE Initialization Protocol
0x8915 RDMA over Converged Ethernet (RoCE)
0x891D TTEthernet Protocol Control Frame (TTE)
0x892F High-availability Seamless Redundancy (HSR)
0x9000 Ethernet Configuration Testing Protocol[10]

Not all well known de facto uses of EtherTypes are always recorded in the IEEE list of EtherType values.[11] For example, EtherType 0x0806 (used by ARP) appears in the IEEE list only as "Symbolics, Inc., Protocol unavailable."[11] However, the IEEE Registration Authority lists all the accepted EtherTypes, including the 0x0806.[5]

https://en.wikipedia.org/wiki/EtherType

时间: 2024-10-19 09:33:41

EtherType的相关文章

gre网络细节

一.OpenStack网络设备的命名规律: 1.TenantA的router和Linux网络命名空间qrouter名称 [email protected]:~# neutron --os-tenant-name TenantA --os-username UserA --os-password password --os-auth-url=http://localhost:5000/v2.0 router-list --field id --field name +---------------

Openstack 实战讲解之-----09-启动实例

检查 在进行实例的启动的时候,我们要先确认各个服务是否都启动了,可以通过下面的命令来看端口和服务是否启动 1.ps aux|grep python 2.netstat -lntup 检查镜像服务 [[email protected] ~]# openstack image list ^L+--------------------------------------+--------+--------+ | ID                                   | Name  

关于RFC2544中的Cut-Through和Store-and-Forward模式

Layer 2 Forwarding Both store-and-forward and cut-through Layer 2 switches base their forwarding decisions on the destination MAC address of data packets. They also learn MAC addresses as they examine the source MAC (SMAC) fields of packets as statio

网络数据包头部在linux网络协议栈中的变化

接收时使用skb_pull()不断去掉各层协议头部:发送时使用skb_push()不断添加各层协议头部. 先说说接收: 150 * eth_type_trans - determine the packet's protocol ID. 151 * @skb: received socket data 152 * @dev: receiving network device 153 * 154 * The rule here is that we 155 * assume 802.3 if th

Git 使用笔记

这是我在Coursera上的学习笔记.课程名称为<Computer Networks>,出自University of Washington. 由于计算机网络才诞生不久,目前正在以高速在发展,所以有些旧的教材可能都已经跟不上时代了.这门课程在2013年左右录制,知识相对还是比较新的.覆盖了计算机网络中的各个协议层,从物理层到应用层都讲得非常仔细.学完这门课程之后对计算机网络会有比较深刻的了解. 本章讲述了这门课程的大致情况,讲述了协议.协议层等基本概念. 目标和动机 课程的主要目标就是介绍计算

【读书笔记】计算机网络1章:课程介绍、协议、分层

这是我在Coursera上的学习笔记.课程名称为<Computer Networks>,出自University of Washington. 由于计算机网络才诞生不久,目前正在以高速在发展,所以有些旧的教材可能都已经跟不上时代了.这门课程在2013年左右录制,知识相对还是比较新的.覆盖了计算机网络中的各个协议层,从物理层到应用层都讲得非常仔细.学完这门课程之后对计算机网络会有比较深刻的了解. 本章讲述了这门课程的大致情况,讲述了协议.协议层等基本概念. 目标和动机 课程的主要目标就是介绍计算

基于 Open vSwitch 的 OpenFlow 实践(zz)

https://www.ibm.com/developerworks/cn/cloud/library/1401_zhaoyi_openswitch/index.html Open vSwitch 概述 Open vSwitch(下面简称为 OVS)是由 Nicira Networks 主导的,运行在虚拟化平台(例如 KVM,Xen)上的虚拟交换机.在虚拟化平台上,OVS 可以为动态变化的端点提供 2 层交换功能,很好的控制虚拟网络中的访问策略.网络隔离.流量监控等等. OVS 遵循 Apach

【转载】linux环境下tcpdump源代码分析

linux环境下tcpdump源代码分析 原文时间 2013-10-11 13:13:02   原文链接   主题 Tcpdump 作者:韩大卫 @ 吉林师范大学 tcpdump.c 是tcpdump 工具的main.c, 本文旨对tcpdump的框架有简单了解,只展示linux平台使用的一部分核心代码. Tcpdump 的使用目的就是打印出指定条件的报文,即使有再多的正则表达式作为过滤条件.所以只要懂得tcpdump -nXXi eth0 的实现原理即可. 进入main之前,先看一些头文件 n

openstack neutron-修改新创建安全组的默认规则

neutron 创建安全组会有两条默认的出口规则 Direction Ether Type IP Protocol Port Range Remote IP Prefix Remote Security Group Actions Egress IPv6 Any Any ::/0 - Delete Rule Egress IPv4 Any Any 0.0.0.0/0 - 遇到的需求要修改它, 找了数据库,配置文件后,在源代码中找到了他 位置 neutron/db/securitygroups_d