B树、B+树、红黑树、AVL树

定义及概念

B树

二叉树的深度较大,在查找时会造成I/O读写频繁,查询效率低下,所以引入了多叉树的结构,也就是B树。
阶为M的B树具有以下性质:

1、根节点在不为叶子节点的情况下儿子数为 2 ~ M
2、除根结点以外的非叶子结点的儿子数为 M/2(向上取整) ~ M
3、拥有 K 个孩子的非叶子节点包含 k-1 个keys(关键字),且递增排列
4、所有叶子结点在同一层,即深度相同

(叶节点可以看成是一种外部节点,不包含任何关键字信息)
  在B-树中,每个结点中关键字从小到大排列,并且当该结点的孩子是非叶子结点时,该k-1个关键字正好是k个孩子包含的关键字的值域的分划。
因为叶子结点不包含关键字,所以可以把叶子结点看成在树里实际上并不存在外部结点,指向这些外部结点的指针为空,叶子结点的数目正好等于树中所包含的关键字总个数加1。

B+树

B+ 树通常用于数据库和操作系统的文件系统中。特点是能够保持数据稳定有序,其插入与修改拥有较稳定的对数时间复杂度。B+ 树元素自底向上插入。
B+树是B-树的变体,也是一种多路搜索树,其定义基本与B-树相同,不同如下:

1、拥有 K 个孩子的非叶子节点包含 k 个keys(关键字),且递增排列。每个关键字不保存数据,只用来索引。
2、所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
3、所有的非叶子结点可以看成是索引部分,结点中仅含有其子树(根结点)中最大(或最小)关键字
4、非叶子结点的子树指针P[i],指向关键字值属于[ K[i], K[i+1] )的子树
5、为所有叶子结点增加一个链指针

红黑树

一棵二叉树如果满足下面的红黑性质,则为一棵红黑树:

1、每个结点或是红的,或是黑的。
2、根结点是黑的。
3、每个叶结点 (NIL) 是黑的。
4、如果一个结点是红的,则它的两个儿子都是黑的。
5、对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。

AVL树

关于AVL树,可以借鉴《数据结构——AVL树》,可以直接看这里,就不再熬诉。
定义:
1、左子树和右子树都是AVL树
2、左子树和右子树的高度差不超过1 ,|HL-HR|<=1
性质:

1、一棵n个结点的AVL树的其高度保持在0(log2(n)),不会超过3/2log2(n+1)
2、一棵n个结点的AVL树的平均搜索长度保持在0(log2(n)).
3、一棵n个结点的AVL树删除一个结点做平衡化旋转所需要的时间为0(log2(n)).

B树和B+树的区别

B/B+树用在磁盘文件组织、数据索引和数据库索引中。其中B+树比B 树更适合实际应用中操作系统的文件索引和数据库索引,因为:
1、B+树的磁盘读写代价更低
B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B 树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。

举个例子,假设磁盘中的一个盘块容纳16bytes,而一个关键字2bytes,一个关键字具体信息指针2bytes。一棵9阶B-tree(一个结点最多8个关键字)的内部结点需要2个盘快。而B+ 树内部结点只需要1个盘快。当需要把内部结点读入内存中的时候,B 树就比B+ 树多一次盘块查找时间(在磁盘中就是盘片旋转的时间)。

2、B+-tree的查询效率更加稳定
由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

3、B树在元素遍历的时候效率较低
B+树只要遍历叶子节点就可以实现整棵树的遍历。在数据库中基于范围的查询相对频繁,所以此时B+树优于B树。

红黑树的应用及和B树区别

应用:

1、广泛用在C++的STL中。map和set都是用红黑树实现的。
2、著名的linux进程调度Completely Fair Scheduler,用红黑树管理进程控制块
3、epoll在内核中的实现,用红黑树管理事件块
4、nginx中,用红黑树管理timer等
5、Java的TreeMap实现
等等

和B树比较
一言而知就是树的深度较高,在磁盘I/O方面的表现不如B树。
要获取磁盘上数据,必须先通过磁盘移动臂移动到数据所在的柱面,然后找到指定盘面,接着旋转盘面找到数据所在的磁道,最后对数据进行读写。磁盘IO代价主要花费在查找所需的柱面上,树的深度过大会造成磁盘IO频繁读写。根据磁盘查找存取的次数往往由树的高度所决定。
所以,在大规模数据存储的时候,红黑树往往出现由于树的深度过大而造成磁盘IO读写过于频繁,进而导致效率低下。在这方面,B树表现相对优异,B树可以有多个子女,从几十到上千,可以降低树的高度。

AVL树和红黑树

红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高。

1、红黑树和AVL树都能够以O(log2 n)的时间复杂度进行搜索、插入、删除操作。
2、由于设计,红黑树的任何不平衡都会在三次旋转之内解决。AVL树增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。

查找方面:
红黑树的性质(最长路径长度不超过最短路径长度的2倍),其查找代价基本维持在O(logN)左右,但在最差情况下(最长路径是最短路径的2倍少1),比AVL要略逊色一点。
AVL是严格平衡的二叉查找树(平衡因子不超过1)。查找过程中不会出现最差情况的单支树。因此查找效率最好,最坏情况都是O(logN)数量级的。

所以,综上:
AVL比RBtree更加平衡,但是AVL的插入和删除会带来大量的旋转。 所以如果插入和删除比较多的情况,应该使用RBtree, 如果查询操作比较多,应该使用AVL

AVL是一种高度平衡的二叉树,维护这种高度平衡所付出的代价比从中获得的效率收益还大,故而实际的应用不多,更多的地方是用追求局部而不是非常严格整体平衡的红黑树。当然,如果场景中对插入删除不频繁,只是对查找特别有要求,AVL还是优于红黑的。

时间: 2024-11-08 09:41:48

B树、B+树、红黑树、AVL树的相关文章

伸展树&amp;红黑树&amp;AVL树总结

最近学习了这3种树,感觉其实有很多相同的地方吧,首先是最重要的旋转操作,3种树都有 AvlTree left_left(AvlTree k1) { //if(height(k1->left)-height(k1->right)<2)return k1; AvlTree k2 = k1->left; k1->left = k2->right; k2->right = k1; k1->Height = max(height(k1->left),height

3、如何判断一棵树是否是红黑树?

一.红黑树的定义 红黑树是每个节点都带有颜色属性的二叉查找树,颜色或红色或黑色.除了二叉查找树强制的一般要求以外,对于任何有效的红黑树有如下的额外要求: 性质1. 节点是红色或黑色. 性质2. 根节点是黑色. 性质3 每个叶节点(NIL节点,空节点)是黑色的. 性质4 每个红色节点的两个子节点都是黑色.(从每个叶子到根的所有路径上不能有两个连续的红色节点) 性质5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点. 二.如何判断是否是红黑树(假设正数代表黑色,负数代表红色) 1.中序遍

从2-3-4树模型到红黑树实现

目录 从2-3-4树模型到红黑树实现 前言 2-3-4树 查找 插入 树的生长 删除 左倾红黑树 查找 插入 删除 总结 参考文献 从2-3-4树模型到红黑树实现 前言 红黑树,是一个高效的二叉查找树.其定义特性保证了树的路径长度在黑色节点上完美平衡,使得其查找效率接近于完美平衡的二叉树. 但是红黑树的实现逻辑很复杂,各种旋转,颜色变化,直接针对其分析,大多数都是死记硬背各种例子,不太容易有个直观的理解.实际上,红黑树是实现手段,是其他概念模型为了方便在二叉树上实现进而定义的节点颜色这个信息.如

浅谈AVL树,红黑树,B树,B+树原理及应用

背景:这几天在看<高性能Mysql>,在看到创建高性能的索引,书上说mysql的存储引擎InnoDB采用的索引类型是B+Tree,那么,大家有没有产生这样一个疑问,对于数据索引,为什么要使用B+Tree这种数据结构,和其它树相比,它能体现的优点在哪里? 看完这篇文章你就会了解到这些数据结构的原理以及它们各自的应用场景. 二叉查找树 简介 二叉查找树也称为有序二叉查找树,满足二叉查找树的一般性质,是指一棵空树具有如下性质: 任意节点左子树不为空,则左子树的值均小于根节点的值. 任意节点右子树不为

红黑树/B+树/AVL树

RB Tree 红黑树  :http://blog.csdn.net/very_2/article/details/5722682 AVL Tree    :http://blog.csdn.net/collonn/article/details/20128205 B[+/-] Tree  :http://hxraid.iteye.com/blog/611105 几种Tree 总结对比 :http://www.iteye.com/topic/614070 [nginx模块开发与架构解析]

霍夫曼树 二三树 红黑树 B树 B+树

霍夫曼树: 特点:带权路径长度最短,∑(每个节点的权重)*(每个节点的层数) 生成:每次合并权值最小的两个节点(子树)建立二叉树,将合并后的子树作为新节点,权值为节点(子树)权值之和 二三树: 特点:平衡查找树,每个叶子节点为空且层数相同,查找时间复杂度O(lgn) 生成:2节点包含一个key和两个子节点(left->key<key<right->key),3节点包含两个key和三个子节点(left->key<key1<middle->key<key2

树-二叉查找树、红黑树

二叉查找树的性质: 如果节点的左子树不空,则左子树上所有结点的值均小于等于它的根结点的值: 如果节点的右子树不空,则右子树上所有结点的值均大于等于它的根结点的值: 任意节点的左.右子树也分别为二叉查找树: 二叉查找树查找某个结点时,是二分查找的思想,查找所需的最大次数等同于二叉树的高度. 缺陷:二叉查找树多次插入新节点时,有可能导致二叉查找树的不平衡,变成线性结构. 二叉查找树的优化=> 红黑树 1.节点是红色或黑色. 2.根节点是黑色. 3.所有叶子都是黑色(叶子是NIL节点). 4.每个红色

从二叉树到2-3-4树再到红黑树

直接进入正题: 一.如何从数组生成一个二叉树 假设数组为:{ 30, 13, 7, 43, 23, 12, 9, 33, 42, 21, 18, 6, 3, 50 },我们不对数组排序,直接生成二叉树. 创建流程: 1.将第一数作为根节点: 2.插入13,13小于30,放在30的左边子节点. 3.插入7,7小于30,7小于13,放在13的左边子节点. 4.插入43,43大于30,放在30的右边子节点. 5.放入23,23小于30,23大于13,放入13的右边子节点. 6.放入12,12小于30,

AVL树的JAVA实现及AVL树的旋转算法

1,AVL树又称平衡二叉树,它首先是一颗二叉查找树,但在二叉查找树中,某个结点的左右子树高度之差的绝对值可能会超过1,称之为不平衡.而在平衡二叉树中,任何结点的左右子树高度之差的绝对值会小于等于 1. 2,为什么需要AVL树呢?在二叉查找树中最坏情况下查找某个元素的时间复杂度为O(n),而AVL树能保证查找操作的时间复杂度总为O(logn). 3,AVL树的JAVA代码实现: AVLTree  继承 BinarySearchTree 并改写 添加节点的add方法,在add方法中判断插入元素后是否

数据结构之树篇3——平衡二叉树(AVL树)

引入 上一篇写了二叉排序树,构建一个二叉排序树,如果构建序列是完全有序的,则会出现这样的情况: 显然这种情况会使得二叉搜索树退化成链表.当出现这样的情况,二叉排序树的查找也就退化成了线性查找,所以我们需要合理调整二叉排序树的形态,使得树上的每个结点都尽量有两个子结点,这样整个二叉树的高度就会大约在\(log(n)\) 左右,其中 \(n\) 为结点个数. 基本性质 ? AVL树也称为平衡二叉树,是一种自平衡的二叉排序树,本质上仍然是一颗二叉排序树,只是增加了"平衡"的要求,平衡是指,对