spark shuffle原理

1.spark中窄依赖的时候不需要shuffle,只有宽依赖的时候需要shuffle,mapreduce中map到reduce必须经过shuffle

2.spark中的shuffle fetch的时候进行merge操作利用aggregator来进行,实际上是个hashmap,放在内存中

1 // Map: "cat" -> c, cat
2 val rdd1 = rdd.Map(x => (x.charAt(0), x))
3 // groupby same key and count
4 val rdd2 = rdd1.groupBy(x => x._1).
5                 Map(x => (x._1, x._2.toList.length))

第一个 Map 操作将 RDD 里的各个元素进行映射, RDD 的各个数据元素之间不存在依赖,可以在集群的各个内存中独立计算,也就是并行化,第二个 groupby 之后的 Map 操作,为了计算相同 key 下的元素个数,需要把相同 key 的元素聚集到同一个 partition 下,所以造成了数据在内存中的重新分布,即 shuffle 操作.shuffle 操作是 spark 中最耗时的操作,应尽量避免不必要的 shuffle.

  宽依赖主要有两个过程: shuffle write 和 shuffle fetch. 类似 Hadoop 的 Map 和 Reduce 阶段.shuffle write 将 ShuffleMapTask 任务产生的中间结果缓存到内存中, shuffle fetch 获得 ShuffleMapTask 缓存的中间结果进行 ShuffleReduceTask 计算,这个过程容易造成OutOfMemory
  shuffle 过程内存分配使用 ShuffleMemoryManager 类管理,会针对每个 Task 分配内存,Task 任务完成后通过 Executor 释放空间.这里可以把 Task 理解成不同 key 的数据对应一个 Task. 早期的内存分配机制使用公平分配,即不同 Task 分配的内存是一样的,但是这样容易造成内存需求过多的 Task 的 OutOfMemory, 从而造成多余的 磁盘 IO 过程,影响整体的效率.(例:某一个 key 下的数据明显偏多,但因为大家内存都一样,这一个 key 的数据就容易 OutOfMemory).1.5版以后 Task 共用一个内存池,内存池的大小默认为 JVM 最大运行时内存容量的16%,分配机制如下:假如有 N 个 Task,ShuffleMemoryManager 保证每个 Task 溢出之前至少可以申请到1/2N 内存,且至多申请到1/N,N 为当前活动的 shuffle Task 数,因为N 是一直变化的,所以 manager 会一直追踪 Task 数的变化,重新计算队列中的1/N 和1/2N.但是这样仍然容易造成内存需要多的 Task 任务溢出,所以最近有很多相关的研究是针对 shuffle 过程内存优化的.

早期的shuffle write有两个比较大的问题:

  1. Map的输出必须先全部存储到内存中,然后写入磁盘。这对内存是一个非常大的开销,当内存不足以存储所有的Map output时就会出现OOM。
  2. 每一个Mapper都会产生Reducer number个shuffle文件,如果Mapper个数是1k,Reducer个数也是1k,那么就会产生1M个shuffle文件,这对于文件系统是一个非常大的负担。同时在shuffle数据量不大而shuffle文件又非常多的情况下,随机写也会严重降低IO的性能。

Spark 0.8显著减少了shuffle的内存压力,现在Map output不需要先全部存储在内存中,再flush到硬盘,而是record-by-record写入到磁盘中。

为了解决shuffle文件过多的情况,Spark 0.8.1引入了新的shuffle consolidation,以期显著减少shuffle文件的数量。

假定该job有4个Mapper和4个Reducer,有2个core,也就是能并行运行两个task。我们可以算出Spark的shuffle write共需要16个bucket,也就有了16个write handler。在之前的Spark版本中,每一个bucket对应的是一个文件,因此在这里会产生16个shuffle文件。

而在shuffle consolidation中每一个bucket并非对应一个文件,而是对应文件中的一个segment,同时shuffle consolidation所产生的shuffle文件数量与Spark core的个数也有关系。在上面的图例中,job的4个Mapper分为两批运行,在第一批2个Mapper运行时会申请8个bucket,产生8个shuffle文件;而在第二批Mapper运行时,申请的8个bucket并不会再产生8个新的文件,而是追加写到之前的8个文件后面,这样一共就只有8个shuffle文件,而在文件内部这有16个不同的segment。因此从理论上讲shuffle consolidation所产生的shuffle文件数量为C×R,其中C是Spark集群的core number,R是Reducer的个数。

需要注意的是当 M=C时shuffle consolidation所产生的文件数和之前的实现是一样的。

Shuffle consolidation显著减少了shuffle文件的数量,解决了之前版本一个比较严重的问题,但是writer handler的buffer开销过大依然没有减少,若要减少writer handler的buffer开销,我们只能减少Reducer的数量,但是这又会引入新的问题,下文将会有详细介绍。

Shuffle Fetch and Aggregator

Shuffle write写出去的数据要被Reducer使用,就需要shuffle fetcher将所需的数据fetch过来,这里的fetch包括本地和远端,因为shuffle数据有可能一部分是存储在本地的。Spark对shuffle fetcher实现了两套不同的框架:NIO通过socket连接去fetch数据;OIO通过netty server去fetch数据。分别对应的类是BasicBlockFetcherIteratorNettyBlockFetcherIterator

在Spark 0.7和更早的版本中,只支持BasicBlockFetcherIterator,而BasicBlockFetcherIterator在shuffle数据量比较大的情况下performance始终不是很好,无法充分利用网络带宽,为了解决这个问题,添加了新的shuffle fetcher来试图取得更好的性能。对于早期shuffle性能的评测可以参看Spark usergroup。当然现在BasicBlockFetcherIterator的性能也已经好了很多,使用的时候可以对这两种实现都进行测试比较。

接下来说一下aggregator。我们都知道在Hadoop MapReduce的shuffle过程中,shuffle fetch过来的数据会进行merge sort,使得相同key下的不同value按序归并到一起供Reducer使用,这个过程可以参看下图:

所有的merge sort都是在磁盘上进行的,有效地控制了内存的使用,但是代价是更多的磁盘IO。

那么Spark是否也有merge sort呢,还是以别的方式实现,下面我们就细细说明。

首先虽然Spark属于MapReduce体系,但是对传统的MapReduce算法进行了一定的改变。Spark假定在大多数用户的case中,shuffle数据的sort不是必须的,比如word count,强制地进行排序只会使性能变差,因此Spark并不在Reducer端做merge sort。既然没有merge sort那Spark是如何进行reduce的呢?这就要说到aggregator了。

aggregator本质上是一个hashmap,它是以map output的key为key,以任意所要combine的类型为value的hashmap。当我们在做word count reduce计算count值的时候,它会将shuffle fetch到的每一个key-value pair更新或是插入到hashmap中(若在hashmap中没有查找到,则插入其中;若查找到则更新value值)。这样就不需要预先把所有的key-value进行merge sort,而是来一个处理一个,省下了外部排序这一步骤。但同时需要注意的是reducer的内存必须足以存放这个partition的所有key和count值,因此对内存有一定的要求。

在上面word count的例子中,因为value会不断地更新,而不需要将其全部记录在内存中,因此内存的使用还是比较少的。考虑一下如果是group by key这样的操作,Reducer需要得到key对应的所有value。在Hadoop MapReduce中,由于有了merge sort,因此给予Reducer的数据已经是group by key了,而Spark没有这一步,因此需要将key和对应的value全部存放在hashmap中,并将value合并成一个array。可以想象为了能够存放所有数据,用户必须确保每一个partition足够小到内存能够容纳,这对于内存是一个非常严峻的考验。因此Spark文档中建议用户涉及到这类操作的时候尽量增加partition,也就是增加Mapper和Reducer的数量。

增加Mapper和Reducer的数量固然可以减小partition的大小,使得内存可以容纳这个partition。但是我们在shuffle write中提到,bucket和对应于bucket的write handler是由Mapper和Reducer的数量决定的,task越多,bucket就会增加的更多,由此带来write handler所需的buffer也会更多。在一方面我们为了减少内存的使用采取了增加task数量的策略,另一方面task数量增多又会带来buffer开销更大的问题,因此陷入了内存使用的两难境地。

为了减少内存的使用,只能将aggregator的操作从内存移到磁盘上进行,Spark社区也意识到了Spark在处理数据规模远远大于内存大小时所带来的问题。因此PR303提供了外部排序的实现方案,相信在Spark 0.9 release的时候,这个patch应该能merge进去,到时候内存的使用量可以显著地减少。

时间: 2024-11-09 17:04:37

spark shuffle原理的相关文章

Spark Shuffle原理、Shuffle操作问题解决和参数调优

摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuffleManager 2 Shuffle操作问题解决 2.1 数据倾斜原理 2.2 数据倾斜问题发现与解决 2.3 数据倾斜解决方案 3 spark RDD中的shuffle算子 3.1 去重 3.2 聚合 3.3 排序 3.4 重分区 3.5 集合操作和表操作 4 spark shuffle参数调优

Spark Shuffle的技术演进

在Spark或Hadoop MapReduce的分布式计算框架中,数据被按照key分成一块一块的分区,打散分布在集群中各个节点的物理存储或内存空间中,每个计算任务一次处理一个分区,但map端和reduce端的计算任务并非按照一种方式对相同的分区进行计算,例如,当需要对数据进行排序时,就需要将key相同的数据分布到同一个分区中,原分区的数据需要被打乱重组,这个按照一定的规则对数据重新分区的过程就是Shuffle(洗牌). Spark Shuffle的两阶段 对于Spark来讲,一些Transfor

Spark Shuffle 堆外内存溢出问题与解决(Shuffle通信原理)

Spark Shuffle 堆外内存溢出问题与解决(Shuffle通信原理) 问题描述 Spark-1.6.0已经在一月份release,为了验证一下它的性能,我使用了一些大的SQL验证其性能,其中部分SQL出现了Shuffle失败问题,详细的堆栈信息如下所示: 16/02/17 15:36:36 WARN server.TransportChannelHandler: Exception in connection from /10.196.134.220:7337 java.lang.Out

spark shuffle内在原理说明

在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量.Spark作为MapReduce框架的一种实现,自然也实现了shuffle的逻辑. Shuffle Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时,输出结果需要按key哈希,并且分发到每

spark性能调优(四) spark shuffle中JVM内存使用及配置内幕详情

转载:http://www.cnblogs.com/jcchoiling/p/6494652.html 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢,所以掌握Spark对JVM的内存使用内幕是至关重要的.很多人对 Spark 的印象是:它是基于内存的,而且可以缓存一大堆数据

.Spark Streaming(上)--实时流计算Spark Streaming原理介

Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/4747735.html 1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP

spark核心原理之SparkContext原理(1)

Spark是最为流行的分布式计算框架,这篇文章简要介绍spark 1.X版本任务调度的基本部件及其原理,包括SparkContext,SparkEnv,Executor,TaskScheduler,DAGScheduler以及其他部件.本文参考自<深入理解Spark>(by耿嘉安)一书. 1  SparkContext SparkDriver用于用户提交任务,SparkDriver初始化首先需要SparkContext初始化,SparkContext配置了整个任务需要的上下文信息,其中配置参数

[Spark性能调优] 第四章 : Spark Shuffle 中 JVM 内存使用及配置内幕详情

本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Memory 的运行原理和机制 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢,所

[Spark性能调优] Spark Shuffle 中 JVM 内存使用及配置详情

[Spark性能调优]  Spark Shuffle 中 JVM 内存使用及配置详情 本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Memory 的运行原理和机制 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对