算法题之Median of Two Sorted Arrays

这道题是LeetCode上的题目,难度级别为5,刚开始做没有找到好的思路,以为是自己智商比较低,后来发现确实也比较低。。。

题目:

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]
nums2 = [2]

The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5

思路是:

对于一个长度为n的已排序数列a,若n为奇数,中位数为a[n / 2 + 1] ,
若n为偶数,则中位数(a[n / 2] + a[n / 2 + 1]) / 2
如果我们可以在两个数列中求出第K小的元素,便可以解决该问题
不妨设数列A元素个数为n,数列B元素个数为m,各自升序排序,求第k小元素
取A[k / 2] B[k / 2] 比较,
如果 A[k / 2] > B[k / 2] 那么,所求的元素必然不在B的前k / 2个元素中(证明反证法)
反之,必然不在A的前k / 2个元素中,于是我们可以将A或B数列的前k / 2元素删去,求剩下两个数列的
k - k / 2小元素,于是得到了数据规模变小的同类问题,递归解决
如果 k / 2 大于某数列个数,所求元素必然不在另一数列的前k / 2个元素中,同上操作。

时间复杂度为log(m + n)的答案:

class Solution {
public:
    int getkth(int s[], int m, int l[], int n, int k){
        // let m <= n
        if (m > n)
            return getkth(l, n, s, m, k);
        if (m == 0)
            return l[k - 1];
        if (k == 1)
            return min(s[0], l[0]);

        int i = min(m, k / 2), j = min(n, k / 2);
        if (s[i - 1] > l[j - 1])
            return getkth(s, m, l + j, n - j, k - j);
        else
            return getkth(s + i, m - i, l, n, k - i);
        return 0;
    }

    double findMedianSortedArrays(int A[], int m, int B[], int n) {
        int l = (m + n + 1) >> 1;
        int r = (m + n + 2) >> 1;
        return (getkth(A, m ,B, n, l) + getkth(A, m, B, n, r)) / 2.0;
    }
};

  

时间: 2024-10-10 12:40:45

算法题之Median of Two Sorted Arrays的相关文章

LeetCode 第二题,Median of Two Sorted Arrays

题目再现 There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). 题意解析 题目意思是给两个大小为m,n的有序数组(m,n可能为0),要求找出这两个数组的中位数.并且程序的时间复杂度必须不能超过O(log(m+n)). 这道题的

刷题4. Median of Two Sorted Arrays

一.题目 Median of Two Sorted Arrays,具体请自行搜索. 这个题目,我看了一下,经过一番思考,我觉得实现起来不是很复杂. 但要做到bug free也不难,最大的问题是性能问题. 性能只有42%的样子,内存占用太多.还需要进一步优化!!! 二.这个题目,我自己实现 提交了2次: 第1次: Wrong Answer 第2次:终于对了 下面是我的完整代码实现,需要的拿去: #include<iostream> #include<vector> using nam

第四题:Median of Two Sorted Arrays

题目链接:题目链接 题意:两个排好序的数组,找到中位数,如果是奇数好办,如果是偶数找到最中间的两个求平均值. 这一题的本质其实就是第mid小的数. 这一题看到一种好的方法,我们令k=mid,对于两个数组,分别取前k/2数,如果A[k/2-1]比B[k/2-1]大,那么说明B前 k/2数肯定在k小数中,A的则不一定,则下面需要从A,B+k/2再次去寻找...反之对于B大的情况也是一样的,如果相 等,那就是这两个数(相等)了,随便返回一个都OK.(Ps:解释一些为什么是k/2-1,因为k是从1开始取

周刷题第二期总结(Longest Substring Without Repeating Characters and Median of Two Sorted Arrays)

这周前面刷题倒是蛮开心,后面出了很多别的事情和问题就去忙其他的,结果又只完成了最低目标. Lonest Substring Without Repeating Characters: Given a string, find the length of the longest substring without repeating characters. Examples: Given "abcabcbb", the answer is "abc", which t

【算法导论学习-016】两个已排过序的等长数组的中位数(median of two sorted arrays)

问题来源 <算法导论>P223 9.3-8: Let X[1..n] and Y[1..n] be two arrays, each containing nnumbers already in sorted order. Give an O(lgn)-time algorithm to find themedian of all 2n elements in arrays X and Y. 翻译过来即:求两个等长(n个元素)的已排序数组A和B的中位数 方案1:对两个数组进行归并直到统计到第n

4. Median of Two Sorted Arrays【leetcode】java,算法,中间值

4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The media

LeetCode(3) || Median of Two Sorted Arrays

LeetCode(3) || Median of Two Sorted Arrays 题记 之前做了3题,感觉难度一般,没想到突然来了这道比较难的,星期六花了一天的时间才做完,可见以前基础太差了. 题目内容 There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should

[leetcode]Median of Two Sorted Arrays @ Python

原题地址:https://oj.leetcode.com/problems/median-of-two-sorted-arrays/ 题意:There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). 解题思路:这道题要求两个已经排好

LeetCode——Median of Two Sorted Arrays

There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). 有两个已排序的数组A和B,大小为m 和 n. 找出两数组的中位数 时间复杂度应该为 O(log (m+n)). 简单粗暴的方法就是把两个数组合并成一个数组,排序,取中位数.