RMQ 解决区间查询问题

线段树写法不管,比较灵活。这里主要讨论DP实现。

其实单纯说RMQ解决的是区间最值查询是不准确的,只要满足一个区间的信息可以从它的覆盖区间获得(即[L,R]<=[L,r],[l,R] (l<=r) ,允许两个子区间重合)即可使用。重合不影响最值判断,所以最值查询是可以用RMQ的,其次如同区间gcd,重合区间也是不影响求值的。一样可以用RMQ。

下面用RMQ的实现来解释上述结论:

dp[i][j]表示以i起始,长度为2^j的线段信息。它可以划分为dp[i][j-1],dp[i+2^(j-1)][j-1],所以状态转移就出来,dp[i][j]=某种计算(dp[i][j-1],dp[i+2^(j-1)][j-1];

查询的话,如果像线段树那样用递归分解区间求解,复杂度log级,因为是严格分离区间,所以不存在之前说的重合影响(所以线段树适用范围大啊)。而DP实现要求在O(1)时间给出答案,所以我们可以把查询区间分解为两个尽可能大的子区间(允许覆盖),这有个很简单的写法,对于区间L,R的查询,求一下k=log2(R-L+1),两个子区间为dp[L][k],dp[R-2^k+1][k];

以区间gcd为例:

LL lg2(LL p)//计算log2(n)
{
    return (LL)(log(p) / log(2));
}
const LL len = 100005;//数据长度
const LL bitlen = 25;//需要的位数
LL n;
LL dp[len][bitlen];//dp数组
LL bit[bitlen];//预处理2^n
void initRMQ()//初始化
{
    for (LL j = 1; bit[j] < n; j ++)
        for (LL i = 0; i+bit[j] <= n; i++)
            dp[i][j] = gcd(dp[i][j - 1], dp[i + bit[j - 1]][j - 1]);
}
LL query(LL l, LL r)
{
    LL mig = lg2(r - l + 1.0);
    return gcd(dp[l][mig], dp[r - bit[mig] + 1][mig]);
}

对于需要增删改的操作,显然是线段树比较合适,对于有大量查询操作的题目,RMQ可以有效降低时间(最近遇到的这类题目对时间空间要求都很高,写代码写丑一点就挂了。提醒自己多注意)。

时间: 2024-09-07 08:35:09

RMQ 解决区间查询问题的相关文章

URAL 1297 Palindrome (后缀数组+RMQ)

题意:给定一个字符串,求一个最长的回回文子串,多解输出第一个. 析:把字符串翻转然后放到后面去,中间用另一个字符隔开,然后枚举每一个回文串的的位置,对第 i 个位置,那么对应着第二个串的最长公共前缀, 求最长公共子串,可以用RMQ解决. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cst

BZOJ 4491: 我也不知道题目名字是什么 RMQ

4491: 我也不知道题目名字是什么 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 317  Solved: 174[Submit][Status][Discuss] Description 给定一个序列A[i],每次询问l,r,求[l,r]内最长子串,使得该子串为不上升子串或不下降子串 Input 第一行n,表示A数组有多少元素 接下来一行为n个整数A[i] 接下来一个整数Q,表示询问数量 接下来Q行,每行2个整数l,r Output 对于每个

HDU 5247 找连续数(RMQ+滑窗)

找连续数 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 281    Accepted Submission(s): 102 Problem Description 小度熊拿到了一个无序的数组,对于这个数组,小度熊想知道是否能找到一个k 的区间,里面的 k 个数字排完序后是连续的. 现在小度熊增加题目难度,他不想知道是否有这样的 k

到处偷的板子们。。。。

沙雕的gcd: //1.gcd int gcd(int a,int b) { return b?gcd(b,a%b):a; } 还有个exgcd: //2.扩展gcd )extend great common divisor ll exgcd(ll l,ll r,ll &x,ll &y) { if(r==0) { x=1; y=0; return l; } else { ll d=exgcd(r,l%r,y,x); y-=l/r*x; return d; } } 求逆元: //3.求a关于

习题:过路费(kruskal+并查集+LCA)

过路费  [问题描述]在某个遥远的国家里,有 n 个城市.编号为 1,2,3,…,n.这个国家的政府修 建了 m 条双向道路,每条道路连接着两个城市.政府规定从城市 S 到城市 T 需 要收取的过路费为所经过城市之间道路长度的最大值.如:A 到 B 长度为 2,B 到 C 长度为 3,那么开车从 A 经过 B 到 C 需要上交的过路费为 3. 佳佳是个做生意的人,需要经常开车从任意一个城市到另外一个城市,因此 他需要频繁地上交过路费,由于忙于做生意,所以他无时间来寻找交过路费最低 的行驶路线.然

单调队列

先放上luogu的题目链接--滑稽窗口 然后我们再来讲单调队列 单调队列是指这样一种队列:在队列中的元素为单调递增状态或单调递减状态. 例如1 2 3 4 5和9 2 1都是单调队列,但1 2 2 3 4和4 3 4 5就不是单调队列. 但普通队列明显是维持不了单调队列的性质的. 为了维持单调队列的单调性质,我们只好想一些方法.方法就是修改队列的性质.单调队列不仅队头可以出队,队尾也可以出队. 比如说有一个单调队列是 1 3 7 8 现在突然要从队尾进来一个6如果单纯的把6插进队尾的话,那这个队

Codeforces Round #371 (Div. 1)

A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给出的01序列相等(比较时如果长度不等各自用0补齐) 题解: 1.我的做法是用Trie数来存储,先将所有数用0补齐成长度为18位,然后就是Trie的操作了. 2.官方题解中更好的做法是,直接将每个数的十进制表示中的奇数改成1,偶数改成0,比如12345,然后把它看成二进制数10101,还原成十进制是2

P1243~P1247 线段树模板题总结

前言 这几天刚刚刷了5道线段树(水)题,现在来总结一下. 首先是犯的不少错误: 1.建树.更新函数没有return.这是最气的,每次最后程序错误查了半天也没查出来,最后发现是没有return.递归边界要return,递归边界要return,递归边界要return,重要的事情说三遍. 2.判断查找区间于线段的变量写反.听说这个是常犯错误. 然后说一下学线段树的收获.线段树的代码量的确多,很能练自己的思维,而且学的过程中简单的理解了一下#define的用处.线段树用来解决区间查询,区间修改都很方便,

线段树-进阶

上一次我们写的线段树已经可以解决区间查询.单点修改了!可喜可贺 那如果现在我们需要区间修改.区间查询呢? 一般有两种思路:lazytag和标记永久化,lazytag的使用面好像更广一些. 一.lazytag 比如我们现在要修改一个区间,我们可以像查询一样分成若干段,然后分别修改每一段. 那么问题来了,每一段要怎么修改?如果直接修改sum,询问就乱套了.如果暴力修改,最坏复杂度O(n),那还要线段树干嘛(╯‵□′)╯掀桌 那我们这么想,我们修改就不修改整个区间了,而是在区间上维护一个标记. 那我们