分频器的verilog设计

笔者最近由于实验室老师的任务安排重新又看了一下分频器的verilog实现,现总结如下,待以后查看之用(重点是查看计数器计到哪个值clk_out进行状态翻转)

1.偶数分频占空比为50%

其实质还是一个N计数器模块来实现,首先要有复位信号,这个复位信号的作用就是使计数器和分频输出clk_out刚开始有一个复位值,其次就是计数翻转了,注意这里是计到哪个值翻转,首先刚开始时reset复位时计数器赋初值为0,然后计数器计到N/2-1时进行clk-out状态翻转,即clk_out<=~clk_out,此时别忘了计数器接着加1操作(count<=count+1),紧接着在计数器计到N-1时clk_out再翻转状态,与此同时计数器进行清零操作。count<=0;

这部分的程序代码如下:

module tmm_c(clk,reset,m,clk_out);
input clk;
input reset;
input [7:0]m;

output clk_out;

reg [7:0]count;
reg clk_out;

[email protected](posedge clk)
begin
if(reset)
begin
count<=0;
clk_out<=0;
end

else
if(count==m-1)
begin
clk_out<=~clk_out;
count<=0;
end
else
if(count==m/2-1)
begin
clk_out<=~clk_out;
count<=count+1;
end
else
count<=count+1;
end

endmodule

与此相关的testbench代码如下:

`timescale 1ns/1ns
module tmm_c_tb;
reg clk;
reg reset;
reg[7:0] m;
wire clk_out;

tmm_c u1(clk,reset,m,clk_out);

initial
begin
clk=0;
reset=1;
m=4;
#10 reset=0;
#1000 $stop;
end
always #5 clk=~clk;

endmodule

modelsim仿真波形图:

2.奇数分频占空比为50%

其实质也是一个计数器,思想和偶数分频相似,不过奇数分频前期需要两个always模块,这两个always模块的输出分别为clk_out1、clk_out2,用到两个count1、count2,其中clk_out1的输出是待分频时钟的上升沿触发进行的计数输出的结果,这个也需要计数器模块和reset复位信号,但此时计到何值clk_out1进行翻转呢?复位完之后还是输出和计数全部为零,然后当计数到count=(N-1)/2时clk_out1进行翻转,计数到count=N-1时计数器清零,clk_out进行翻转。clk_out2的计数器和输出同count1和clk_out1.但不同的是它是在待分频时钟的下降沿进行触发。最总的结果是clk_out=clk_out1|clk_out2(进行或运算)

以下是程序代码:

module tnn_c(clk,reset,n,clk_out);
input clk;
input reset;
input[7:0]n;
output clk_out;

reg [7:0]count1;
reg [7:0]count2;
//reg clk_out;
reg clk1;
reg clk2;

[email protected](posedge clk)
begin
if(reset)
begin
count1<=0;
clk1<=0;
end
else
if(count1==n-1)
begin
count1<=0;
clk1=~clk1;
end

else
if(count1==(n-1)/2)
begin
clk1=~clk1;
count1<=count1+1;
end
else
count1<=count1+1;

end

[email protected](negedge clk)
begin
if(reset)
begin
count2<=0;
clk2<=0;
end
else
if(count2==n-1)
begin
count2<=0;
clk2=~clk2;
end
else
if(count2==(n-1)/2)
begin
clk2=~clk2;
count2<=count2+1;
end
else
count2<=count2+1;

end

assign clk_out=clk1|clk2;

endmodule

相应的testbench:

`timescale 1ns/1ns
module tnn_c_tb;
reg clk;
reg reset;
reg[7:0] n;
wire clk_out;

tnn_c u(clk,reset,n,clk_out);

initial
begin
clk=0;
reset=1;
n=5;
#30 reset=0;
#1000 $stop;
end
always #5 clk=~clk;

endmodule

modelsim仿真图:

分频器的verilog设计

时间: 2024-10-03 23:22:18

分频器的verilog设计的相关文章

全数字锁相环(PLL)的原理简介以及verilog设计代码

随着数字电路技术的发展,数字锁相环在调制解调.频率合成.FM 立体声解码.彩色副载波同步.图象处理等各个方面得到了广泛的应用.数字锁相环不仅吸收了数字电路可靠性高.体积小.价格低等优点,还解决了模拟锁相环的直流零点漂移.器件饱和及易受电源和环境温度变化等缺点,此外还具有对离散样值的实时处理能力,已成为锁相技术发展的方向. 所谓数字PLL,就是指应用于数字系统的PLL,也就是说数字PLL中的各个模块都是以数字器件来实现的,是一个数字的电路. 数字锁相环的优点是电路最简单有效,可采用没有压控的晶振,

Verilog设计中的锁存器

问题: 什么是锁存器? 什么时候出现锁存器? 锁存器对电路有什么影响? 如何在FPGA设计中避免锁存器? 在FPGA设计中应该避免锁存器.实际上,锁存器与D触发器实现的逻辑功能基本相同,都有暂存数据的功能.但如果两者都由与非门搭建的话,锁存器耗用的逻辑资源要比D触发器少(D触发器需要12个MOS管,锁存器只需6个MOS管),锁存器的集成度更高.所以在的ASIC设计中会用到锁存器.但锁存器对毛刺敏感,无异步复位端,不能让芯片在上电时处在确定的状态:另外,锁存器会使静态时序分析变得很复杂,不利于设计

基于basys2驱动LCDQC12864B的verilog设计图片显示

前言 在做这个实验的时候在网上找了许多资料,都是关于使用单片机驱动LCD显示,确实用单片机驱动是要简单不少,记得在FPGA学习交流群里问问题的时候,被前辈指教,说给我最好的指教便是别在玩这个了,多看看关于FPGA方面的书籍,比做这个单片机做的东西价值强多了.现在想来确实,自从学习FPGA以来,看过的书没有多少,只是想做个什么了,就在网上找找例程,照抄下来,把算法推理一遍,下个板子实现了,便以为自己会了懂了,要是自己在写一个便问题百出.那么菜鸟始终是菜鸟.自己根本没有掌握FPGA的设计思想和优势,

【CPU微架构设计】利用Verilog设计基于饱和计数器和BTB的分支预测器

在基于流水线(pipeline)的微处理器中,分支预测单元(Branch Predictor Unit)是一个重要的功能部件,它负责收集和分析分支/跳转指令的参数和执行结果,当处理新的分支/跳转指令时,BPU将根据已有的统计结果和当前分支跳转指令的参数,预测其执行结果,为流水线取指提供决策依据,进而提高流水线效率. 下面讨论提出分支预测机制的主要原因和实际意义: 在流水线处理分支跳转指令时,目标地址往往需要推迟到指令的执行阶段才能运算得出,在此之前处理器无法及时得知下一条指令的取指地址,因此无法

verilog设计十进制计数器(含进位位)

十进制计数器: 设计要求: 1.每当计数器值为4'b001时,自动回到4'b0000 2.每个时钟沿计数器值加1 3.进位输出carry应该与4'b1001同周期输出 4.异步复位 module cnt10 ( clk, rst_n, carry, cnt ); input clk, rst_n; output carry; output [3:0] cnt; reg carry; reg [3:0] cnt; always @( posedge clk or negedge rst_n ) b

verilog设计加法器

概述 本文利用了硬件行为描述.数据流描述.结构描述三种方法分别写了几个加法器 一位半加法器 即两个一位的二进制数相加,得到其正常相加的结果的最后一位. 仿真波形图 硬件行为描述 设计文件 12345678910111213141516171819202122 module bjqxw(a,b,sum,cout); input a,b; output sum,cout; reg sum,cout; always @(a or b) begin case({a,b}) 2'b00:begin sum

Verilog分频器

verilog设计进阶 时间:2014年5月6日星期二 主要收获: 1.自己动手写了第一个verilog程序. 题目: 利用10M的时钟,设计一个单周期形状如下的周期波形. 思考: 最开始的想法是:定义两个计数器进行计数,两个使能标志位分别控制这两个变量.但是这样逻辑又太复杂,网上搜了搜,还是定义一个计数器比较好. verilog程序: modulefdivision(clk, rst, clk_out); input clk; input rst; output clk_out; reg[5:

Verilog代码可移植性设计(转自特权同学博客http://bbs.ednchina.com/BLOG_ARTICLE_1983188.HTM)

最近开始学习FPGA,之前项目中仅用过parameter,在CrazyBingo的<FPGA设计技巧与案例开发例程详解>中看到使用localparam,以及在366页中简单介绍了下‘define,parameter和localparam的区别.查找特权同学博客发现其曾经讲诉过.文中红色阴影处为文中错误. Verilog代码可移植性设计 1.       参数定义 localparam,实例代码如下: module tm1( clk,rst_n, pout ); input clk; input

Verilog 分频器

verilog设计进阶 时间:2014年5月6日星期二 主要收获: 1. 自己动手写了第一个verilog程序. 题目: 利用10M的时钟,设计一个单周期形状如下的周期波形. 思考: 最开始的想法是:定义两个计数器进行计数,两个使能标志位分别控制这两个变量.但是这样逻辑又太复杂,网上搜了搜,还是定义一个计数器比较好. verilog程序: module fdivision(clk, rst, clk_out); input clk; input rst; output clk_out; reg[