大数据技术扫盲,你必须会的这些点

虽说人生没有白走的路,新的一年来到,会的还是原来的知识,人的身价就摆在那里,无论怎么折腾,也不会拿到更好的offer。所以在年轻还有拼劲的时候多学学知识,寻找自身的不足,查漏补缺非常重要。**今天小编给大家带来的是绝对的干货!以下是我自己这些年爬过的那些坑。在大数据开发这一块来说还算是比较全面的吧!废话不多说,直接上干货!

1、Java编程技术

Java编程技术是大数据学习的基础,Java是一种强类型语言,拥有极高的跨平台能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握Java基础是必不可少的。

在这里还是要推荐下我自己建的大数据学习交流群:529867072,群里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴加入。

2、Linux命令

对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令。

3、Hadoop

Hadoop是大数据开发的重要框架,其核心是HDFS和MapReduce,HDFS为海量的数据提供了存储,MapReduce为海量的数据提供了计算,因此,需要重点掌握,除此之外,还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与操作!

4、Avro与Protobuf

Avro与Protobuf均是数据序列化系统,可以提供丰富的数据结构类型,十分适合做数据存储,还可进行不同语言之间相互通信的数据交换格式,学习大数据,需掌握其具体用法。

5、Hive

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。

6、HBase

HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。

7、Redis

Redis是一个key-value存储系统,其出现很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用,它提供了Java,C/C++,C#,PHP,Java,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便,大数据开发需掌握Redis的安装、配置及相关使用方法。

8、ZooKeeper

ZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。

9、Flume

Flume是一款高可用、高可靠、分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。大数据开发需掌握其安装、配置以及相关使用方法。

10、Azkaban

Azkaban是一个批量工作流任务调度器,可用于在一个工作流内以一个特定的顺序运行一组工作和流程,可以利用Azkaban来完成大数据的任务调度,大数据开发需掌握Azkaban的相关配置及语法规则。

11、SSM

SSM框架是由Spring、SpringMVC、MyBatis三个开源框架整合而成,常作为数据源较简单的web项目的框架。大数据开发需分别掌握Spring、SpringMVC、MyBatis三种框架的同时,再使用SSM进行整合操作。

12、Kafka

Kafka是一种高吞吐量的分布式发布订阅消息系统,其在大数据开发应用上的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。大数据开发需掌握Kafka架构原理及各组件的作用和使用方法及相关功能的实现。

13、Python与数据分析

Python是面向对象的编程语言,拥有丰富的库,使用简单,应用广泛,在大数据领域也有所应用,主要可用于数据采集、数据分析以及数据可视化等,因此,大数据开发需学习一定的Python知识。

14、phoenix

phoenix是用Java编写的基于JDBC API操作HBase的开源SQL引擎,其具有动态列、散列加载、查询服务器、追踪、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。

15、Scala

Scala是一门多范式的编程语言,大数据开发重要框架Spark是采用Scala语言设计的,想要学好Spark框架,拥有Scala基础是必不可少的,因此,大数据开发需掌握Scala编程基础知识!

16、Spark

Spark是专为大规模数据处理而设计的快速通用的计算引擎,其提供了一个全面、统一的框架用于管理各种不同性质的数据集和数据源的大数据处理的需求,大数据开发需掌握Spark基础、SparkJob、Spark RDD、spark job部署与资源分配、Spark shuffle、Spark内存管理、Spark广播变量、Spark SQL、Spark Streaming以及Spark ML等相关知识。

结语

大数据是当时时代下一门炙热的IT学科,行情十分火爆,不论是阿里巴巴、百度这样的大公司,还是中小企业都很重视,甚至是第一个纳入国家战略的技术,政府扶持力度大,支持甚多!

面对这样的大环境下,大数据相关岗位薪水高,就业前景好。所以也有更多的有志之士参与进来,但是转行还是需要谨慎,每个行业都有每个行业的要求,可以根据自己的兴趣爱好适当的了解,考虑清楚再做出选择,不要盲目跟风。最后祝愿大家也能在新的一年里得到一份理想的工作。

原文地址:https://blog.51cto.com/14296550/2400623

时间: 2024-11-07 09:25:09

大数据技术扫盲,你必须会的这些点的相关文章

基于大数据技术的手机用户画像与征信研究

内容提要:手机用户画像是电信运营商实现“数据驱动业务与运营”的重要举措.首先,介绍了手机用户画像过程中对个人隐私保护的方法,然后分析手机用户画像的数据来源与大数据实现技术,最后,通过数据样本实例分析手机用户画像在个人征信中的应用. 引言 随着计算机网络技术的不断发展,“数据即资源”的大数据时代已经来临.用户画像是电信运营商为了避免管道化风险,实现“数据驱动业务与运营”的重要举措.用户画像与应用大数据技术对客户分类密切相关,是单个客户的众多属性标签的累积:另一方面,在运营商涉足的消费金融领域,对手

浅谈大数据技术

忽如一夜春风来,无人不谈大数据.大数据就像前两年的云计算一样,是一个时下被炒得很火的概念.那么什么是大数据,大数据是如何定义的,大数据处理技术有哪些,大数据能给我们带来什么益处?虽然我不知道现在这些概念是如何被炒作的,但是作为一名互联网行业的从业者,作为一个大数据技术的实践者,根据自己的理解和经验发表一点浅显的认识,理解肯定有不到位之处请大家批评指正. 无论是大数据技术还是云计算技术,其实这些技术都不是突然冒出来的,而是随着互联网技术的发展,人们把现有的技术加以整合,总结,概括出来并冠一个新名字

京东基于大数据技术的个性化电商搜索引擎

介绍京东个性化搜索引擎应用场景,和如何利用大数据技术实现个性化搜索.京东个性化场景包括基于行为.偏好.地域.时间.好友关系等维度,其中偏好是个性化搜索重点考虑的内容,分享会介绍搜索如何应用长期偏好.实时偏好以及偏好在不同的平台(web.移动.微信/手Q)起到的作用.在实现个性化搜索当中会分享京东搜索在解决个性化过程中遇到的问题.使用的技术.以及经验和思考. 原文:http://www.infoq.com/cn/presentations/jingdong-personalized-search-

大数据技术人年度盛事! BDTC 2016将于12月8-10日在京举行

2016年12月8日-10日,由中国计算机学会(CCF)主办,CCF大数据专家委员会承办,中国科学院计算技术研究所和CSDN共同协办的2016中国大数据技术大会(Big Data Technology Conference 2015,BDTC 2016)将在北京新云南皇冠假日酒店隆重举办. 图片描述 中国大数据技术大会(BDTC)的前身是Hadoop中国云计算大会(Hadoop in China,HiC).从2008年仅60余人参加的技术沙龙到当下数千人的技术盛宴,目前已成为国内最具影响力.规模

视频大数据技术在智慧城市中的应用

现代社会的信息量正以飞快的速度增长,这些信息里又积累着大量的数据.预计到2025年,每年产生的数据信息将会有超过1/3的内容驻留在云平台中或借助云平台处理.我们需要对这些数据进行分析和处理,以获取更多有价值的信息.在未来的"智慧城市"中,会有越来越大的结构化以及非结构化的数据.那么我们如何高效地存储和管理这些数据,如何分析这些数据呢?答案是,我们需要强有力的大数据处理系统进行支撑. 作为目前最火热的词汇之一,大数据在各个领域都已有了较为成熟的应用.在视频监控领域,大数据时代正悄悄来临.

下载基于大数据技术推荐系统实战教程(Spark ML Spark Streaming Kafka Hadoop Mahout Flume Sqoop Redis)

地址:http://pan.baidu.com/s/1c2tOtwc  密码:yn2r 82课高清完整版,转一播放码. 互联网行业是大数据应用最前沿的阵地,目前主流的大数据技术,包括 hadoop,spark等,全部来自于一线互联网公司.从应用角度讲,大数据在互联网领域主要有三类应用:搜索引擎(比如百度,谷歌等),广告系统(比如百度凤巢,阿里妈妈等)和推荐系统(比如阿里巴巴天猫推荐,优酷视频推荐等). 本次培训以商业实战项目作为驱动来学习大数据技术在推荐系统项目中的应用.使得学员能够亲身体会大数

首届中国大数据技术沙龙会议

当今最红的名词是大数据,掌握趋势,才能赢得未来!首届中国大数据技术沙龙会议暨超人学院技术交流会,邀请各位前来参会.在这里,你可以了解大数据技术的趋势,掌握企业对于技术的最新动态,学习和分享你在工作中的经验及问题,你可以分享也可以提问,让你掌握大数据最前沿的技术.奔跑吧,兄弟!赶快报名参加!更多精彩内容抢先看!

大数据技术 vs 数据库一体机[转]

http://blog.sina.com.cn/s/blog_7ca5799101013dtb.html 目前,虽然大数据与数据库一体机都很火热,但相当一部分人却无法对深入了解这两者的本质区别.这里便对大数据技术(如Hadoop等,主要指MapReduce与NoSQL)与数据库一体机(新一代的主流关系数据库)技术对比如下: 硬件架构 从本质上来讲,两者的硬件架构基本相同,都是采用x86服务器集群的分布式并行模式来应对大规模的数据与计算.但是,数据库一体机的商家大都会对硬件体系进行面向产品化的.系

痛客平台大数据技术助推贵阳“一企一策”

痛客平台大数据技术助推贵阳"一企一策" 当前中国,正在实施供给侧结构性改革,将经济增长动力点由消费者需求回归于企业方的供给.在这样的背景下,贵州省贵阳市正在实施"一企一策"工作.针对贵阳市的工业领域企业,开展相关企业的转型升级工作,落实国家供给侧结构性改革. "一企一策"工作旨在明确企业转型升级的重点方向,编制转型升级方案.而痛客平台致力于用众包方式解决各行业企业痛点,突破技术瓶颈.引领企业升级.在供给侧结构性改革的大背景下,痛客平台与"