CoderForces 163E e-Government(AC自动机+树状数组维护fail树的dfs序)

E. e-Government

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

The best programmers of Embezzland compete to develop a part of the project called "e-Government" — the system of automated statistic collecting and press analysis.

We know that any of the k citizens can become a member of the Embezzland government. The citizens‘ surnames are a1, a2, ..., ak. All surnames are different. Initially all k citizens from this list are members of the government. The system should support the following options:

  • Include citizen ai to the government.
  • Exclude citizen ai from the government.
  • Given a newspaper article text, calculate how politicized it is. To do this, for every active government member the system counts the number of times his surname occurs in the text as a substring. All occurrences are taken into consideration, including the intersecting ones. The degree of politicization of a text is defined as the sum of these values for all active government members.

Implement this system.

Input

The first line contains space-separated integers n and k (1 ≤ n, k ≤ 105) — the number of queries to the system and the number of potential government members.

Next k lines contain the surnames a1, a2, ..., ak, one per line. All surnames are pairwise different.

Next n lines contain queries to the system, one per line. Each query consists of a character that determines an operation and the operation argument, written consecutively without a space.

Operation "include in the government" corresponds to the character "+", operation "exclude" corresponds to "-". An argument of those operations is an integer between 1 and k — the index of the citizen involved in the operation. Any citizen can be included and excluded from the government an arbitrary number of times in any order. Including in the government a citizen who is already there or excluding the citizen who isn‘t there changes nothing.

The operation "calculate politicization" corresponds to character "?". Its argument is a text.

All strings — surnames and texts — are non-empty sequences of lowercase Latin letters. The total length of all surnames doesn‘t exceed 106, the total length of all texts doesn‘t exceed 106.

Output

For any "calculate politicization" operation print on a separate line the degree of the politicization of the given text. Print nothing for other operations.

Examples

input

Copy

7 3aaaab?aaab-2?aaab-3?aaab+2?aabbaa

output

Copy

6436


题意:

给出n个字符串,表示n个人名,有两种操作:

?string ,统计字符串string中出现的属于城市居民的次数。

+id,把编号为id的人变为城市居民,如果已经是忽略。

-id,把编号为id的人变为不是城市居民,如果已经不是的话忽略。

现有m个操作,对于?输出结果。

思路:

我们在统计的时候其实就是沿着fail指针走,把所有的标记叠加起来,而fail指针构成了一棵fail树,所以我们在求当前节点的fail指针方向有多少个标记的时候不必一层层的fail上去了,对于每个点维护其到根的有效节点的个数即可,当更新某个点的时候,就相当于这个点的子树到根的有效节点的个数都发生了变化,将树形结构变成线性结构,在树状数组中更新即可。

 

参考代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define lowbit(x) (x&-x)
#define maxn 1000010
int n,m,tot;
char s[maxn];
vector<int> vec[maxn];
int ch[maxn][26],fail[maxn],val[maxn],last[maxn];
int c[maxn],in[maxn],out[maxn],tim,id[maxn],use[maxn];

inline void Modify(int x,int num)
{
    if(x==0) return ;
    while(x<maxn)
    {
        c[x]+=num;
        x+=lowbit(x);
    }
}
inline void Add(int x,int y,int num)
{
    Modify(x,num);Modify(y,-num);
}
inline int Query(int x)
{
    int res=0;
    while(x>0)
    {
        res+=c[x];
        x-=lowbit(x);
    }
    return res;
}

inline void Init()
{
    tot=1;tim=0;
    memset(ch[0],0,sizeof(ch[0]));
    memset(val,0,sizeof(val));
    memset(use,0,sizeof(use));
}
inline int idx(char c){ return c-‘a‘;}
inline void Insert(char*s,int x)
{
    int u=0,len=strlen(s);
    for(int i=0;i<len;++i)
    {
        int c=idx(s[i]);
        if(!ch[u][c])
        {
            memset(ch[tot],0,sizeof(ch[tot]));
            val[tot]=0;
            ch[u][c]=tot++;
        }
        u=ch[u][c];
    }
    val[u]=x;
    id[x]=u;
}
inline void GetFail()
{
    queue<int> q;
    fail[0]=0;
    for(int c=0;c<26;++c)
    {
        int u=ch[0][c];
        if(u){ fail[u]=0;q.push(u);last[u]=0; }
    }
    //cout<<"cnt "<<cnt<<endl;
    while(!q.empty())
    {
        int r=q.front(); q.pop();
        vec[fail[r]].push_back(r);
        for(int c=0;c<26;++c)
        {
            int u=ch[r][c];
            if(!u){ch[r][c]=ch[fail[r]][c];continue;}
            q.push(u);
            int v=fail[r];
            fail[u]=ch[v][c];
            last[u] = val[fail[u]]?fail[u]:last[fail[u]];
        }
    }
}
inline void dfs(int u)
{
    in[u]=++tim;
    for(int i=0,len=vec[u].size();i<len;++i)
        dfs(vec[u][i]);
    out[u]=tim;
}

inline void clac(int x,int num)
{
    Add(in[id[x]],out[id[x]]+1,num);
}

inline void work()
{
    ll ans=0;
    int u=0,len=strlen(s);
    for(int i=1;i<len;++i)
    {
        int r=idx(s[i]);
        u=ch[u][r];
        ans+=Query(in[u]);
    }
    printf("%lld\n",ans);
}

int main()
{
    scanf("%d%d",&m,&n);
    Init();
    for(int i=1;i<=n;++i)
        scanf("%s",s),Insert(s,i),use[i]=1;
    GetFail();
    dfs(0);

    for(int i=1;i<=n;++i) clac(i,1);
     while(m--)
    {
        scanf("%s",s);
        if(s[0]==‘?‘) work();
        else
        {
            int x;
            sscanf(s+1,"%d",&x);
            if(use[x]&&s[0]==‘-‘)
            {
                use[x] = 0;
                clac(x,-1);
            }
            else if(!use[x]&&s[0]==‘+‘)
            {
                use[x] = 1;
                clac(x,1);
            }
        }
    }

    return 0;
}
/*
7 3
a
aa
ab
?aaab
-2
?aaab
-3
?aaab
+2
?aabbaa
*/

原文地址:https://www.cnblogs.com/songorz/p/11441135.html

时间: 2024-10-08 17:00:59

CoderForces 163E e-Government(AC自动机+树状数组维护fail树的dfs序)的相关文章

zoj 2112 Dynamic Rankings(树状数组套主席树)

题意:对于一段区间,每次求[l,r]的第k大,存在单点修改操作: 思路: 学习主席树参考: http://blog.csdn.net/wjf_wzzc/article/details/24560117(各种形式) http://blog.csdn.net/bossup/article/details/31921235(推荐) http://blog.csdn.net/xiaofengcanyuexj/article/details/25553521?utm_source=tuicool(图解)

【树状数组套主席树】带修改区间K大数

P2617 Dynamic Rankings 题目描述给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]……a[j]中第k小的数是多少(1≤k≤j-i+1),并且,你可以改变一些a[i]的值,改变后,程序还能针对改变后的a继续回答上面的问题.你需要编一个这样的程序,从输入文件中读入序列a,然后读入一系列的指令,包括询问指令和修改指令. 对于每一个询问指令,你必须输出正确的回答. 输入输出格式输入格

BZOJ 3295 [Cqoi2011]动态逆序对 树状数组套线段树

题意:链接 方法:树状数组套线段树 解析: 这题基本上写的都是什么CDQ点分治,主席树之类的,然而这我都并不会,所以写了一发平衡树套线段树想卡时卡过去,然而我并没有得逞,T的不要不要的,这里用平衡树套线段树的方法参见我的题解:排队.这道题比那道更要简单. 然后我就打算弃坑了~不过看140142做这道题做的热火朝天的,还是打算回来做一下,yy下树状数组套线段树,然后去看hz的题解,只看懂他写理论部分了,代码部分不知所云,所以还是还是得yy.引用理论部分. 删除某个数,只要统计它之前还存在的比它大的

HDU 1166 敌兵布阵 (我的树状数组加线段树点修改模板)

思路:本题因为是点修改,所以我们可以用线段树或者是树状数组了.线段树的基本操作我在我的代码中会具体体现,关键是要理解下面这幅图,具体的思想大家可以去看看其他的资料 线段树AC代码: #include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using namespace std; #define N 50005 int num

2018中国大学生程序设计竞赛 - 网络选拔赛 1010 YJJ&#39;s Salesman 【离散化+树状数组维护区间最大值】

题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6447 YJJ's Salesman Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 919    Accepted Submission(s): 290 Problem Description YJJ is a salesman who h

Playrix Codescapes Cup (Codeforces Round #413, rated, Div. 1 + Div. 2) C. Fountains 【树状数组维护区间最大值】

题目传送门:http://codeforces.com/contest/799/problem/C C. Fountains time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Arkady plays Gardenscapes a lot. Arkady wants to build two new fountains. The

Codeforces1076E. Vasya and a Tree(dfs+离线+树状数组维护)

题目链接:传送门 题目: E. Vasya and a Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Vasya has a tree consisting of n vertices with root in vertex 1. At first all vertices has 0 written on it.

树状数组维护前缀和、后缀和、个数|牛牛的Link Power

思路 另线段树做法:https://www.cnblogs.com/fisherss/p/12287606.html F题树状数组维护前缀即可 题目地址 https://ac.nowcoder.com/acm/contest/3004/F #include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 1e5+100; int n; char s[maxn]; const ll mod =

浅谈二维中的树状数组与线段树

一般来说,树状数组可以实现的东西线段树均可胜任,实际应用中也是如此.但是在二维中,线段树的操作变得太过复杂,更新子矩阵时第一维的lazy标记更是麻烦到不行. 但是树状数组在某些询问中又无法胜任,如最值等不符合区间减法的询问.此时就需要根据线段树与树状数组的优缺点来选择了. 做一下基本操作的对比,如下图. 因为线段树为自上向下更新,从而可以使用lazy标记使得矩阵的更新变的高校起来,几个不足就是代码长,代码长和代码长. 对于将将矩阵内元素变为某个值,因为树状数组自下向上更新,且要满足区间加法等限制