高并发大多的瓶颈在后台,在存储,mysql的正常的优化方案如下:
1)代码中sql语句优化
2)数据库字段优化,索引优化
3)加缓存,redis/memcache等
4)主从,读写分离
5)分区表
6)垂直拆分,解耦模块
7)水平切分
点评:
1、1&2是最简单,也是提升效率最快的方式。也许有人说这两点你已经做的很好了,你的每条语句都命中了索引,是最高效的。但是你是否是为了你的sql达到最优而去建索引,而不是从整个业务上来考虑。比如,订单表上我需要增加xx索引满足某单一业务,是否就一定要加,其他方法能否解决。如果要满足所有业务的需求,那么索引就泛滥了,对于千万级以上的表来说,维护索引的成本大大增加,反而增加了数据库的内存的开销。
2、数据库字段的优化。曾经发现一高级程序员在表字段的设计上,一个日期类型,被设计为varchar类型,不规范的同时,无法对写入数据校验,做索引的效率也有差别(网(xian)友(pen)的(liao)观(zai)点(shuo),具体差别原理不详)。
3、缓存适合读多写少更新频度相对较低的业务场景,否则缓存异议不大,命中率不高。缓存通常来说主要为了提高接口处理速度,降低并发带来的db压力以及由此产生的其他问题。你的接口时延多少?有没有被用户吐槽?有没有必要提升?好吧,我们的前台后台商家并发量太低,当我没说。
4、分区不是分表,结果还是一张表,只不过把存放的数据文件分词了多个小块,分块后。在表数据非常大的情况下,可以解决无法一次载入内存,以及大表数据维护等问题。
5、垂直拆分将表按列拆成多表,常见于将主表的扩展数据独立开,文本数据独立开,降低磁盘io的压力。
6、水平拆,这是一把最有效的牛刀。但是存在一个误区,有的人会觉得,为什么不在最开始就直接水平线拆,免去了后面迁移数据的麻烦。我个人感觉是,下定某个决策之前,必须有一个非常充分的理由。水平拆分的主要目的是提升单表并发读写能力(压力分散到各个分表中)和磁盘IO性能(一个非常大的.MYD文件分摊到各个小表的.MYD文件中)。如果没有千万级以上数据,为什么要拆,仅对单表做做优化也是可以的;再如果没有太大的并发量,分区表也一般能够满足。所以,一般情况下,水平拆分是最后的选择,在设计时还是需要一步一步走。
————————————————
版权声明:本文为CSDN博主「qiuweihong」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qiuweihong/article/details/78751466
原文地址:https://www.cnblogs.com/betterquan/p/11415681.html