OpenCASCADE圆与平面求交

OpenCASCADE圆与平面求交

[email protected]

在 解析几何求交之圆与二次曲面中分析了OpenCASCADE提供的类IntAna_IntConicQuad可以用来计算圆与二次曲面之间的交点,这个算法是将平面Plane作为二次曲面的一个特例来处理,最后主要是对三角函数方程进行求解。

当直接使用圆和平面作为参数时,IntAna_IntConicQuad重载了函数Perform来对圆和平面进行求交计算,这时的算法与前面解三角函数不同,代码如下:

void IntAna_IntConicQuad::Perform (const gp_Circ& C, const gp_Pln& P,
				  const Standard_Real Tolang,
				  const Standard_Real Tol)
{

  done=Standard_False;

  gp_Pln Plconic(gp_Ax3(C.Position()));
  IntAna_QuadQuadGeo IntP(Plconic,P,Tolang,Tol);
  if (!IntP.IsDone()) {return;}
  if (IntP.TypeInter() == IntAna_Empty) {
    parallel=Standard_True;
    Standard_Real distmax = P.Distance(C.Location()) + C.Radius()*Tolang;
    if (distmax < Tol) {
      inquadric = Standard_True;
    }
    else {
      inquadric = Standard_False;
    }
    done=Standard_True;
  }
  else     if(IntP.TypeInter() == IntAna_Same) {
    inquadric = Standard_True;
    done = Standard_True;
  }
  else {
    inquadric=Standard_False;
    parallel=Standard_False;
    gp_Lin Ligsol(IntP.Line(1));

    gp_Vec V0(Plconic.Location(),Ligsol.Location());
    gp_Vec Axex(Plconic.Position().XDirection());
    gp_Vec Axey(Plconic.Position().YDirection());

    gp_Pnt2d Orig(Axex.Dot(V0),Axey.Dot(V0));
    gp_Vec2d Dire(Axex.Dot(Ligsol.Direction()),
		  Axey.Dot(Ligsol.Direction()));

    gp_Lin2d Ligs(Orig,Dire);
    gp_Pnt2d Pnt2dBid(0.0,0.0);
    gp_Dir2d Dir2dBid(1.0,0.0);
    gp_Ax2d Ax2dBid(Pnt2dBid,Dir2dBid);
    gp_Circ2d Cir(Ax2dBid,C.Radius());

    IntAna2d_AnaIntersection Int2d(Ligs,Cir);

    if (!Int2d.IsDone()) {return;}

    nbpts=Int2d.NbPoints();
    for (Standard_Integer i=1; i<=nbpts; i++) {

      gp_Pnt2d resul(Int2d.Point(i).Value());
      Standard_Real X= resul.X();
      Standard_Real Y= resul.Y();
      pnts[i-1].SetCoord(Plconic.Location().X() + X*Axex.X() + Y*Axey.X(),
			 Plconic.Location().Y() + X*Axex.Y() + Y*Axey.Y(),
			 Plconic.Location().Z() + X*Axex.Z() + Y*Axey.Z());
      paramonc[i-1]=Int2d.Point(i).ParamOnSecond();
    }
    done=Standard_True;
  }
}

  

从上述代码中可以看出,直接对圆和平面求交的算法步骤如下:

l 对圆所在平面与平面进行求交,来判断圆所在平面与平面的状态:平行或是圆在平面内部;

l 如果圆所在平面与平面不平行,则得出交线;

l 然后将交线和圆转换成二维空间进行求交计算;

我觉得在得出圆所在平面与平面的交线后,再转换到二维空间来计算交点的方法有点复杂。在得到两个平面的交线后,就可以直接将圆心P0坐标向交线投影得到垂点Pm,先判断圆心到Pm点距离等于半径时,圆和平面就只有一个交点,就是Pm。小于半径时有两个交点,将Pm沿着交线方向分别移动L和-L距离就可以得到交点了,其中:

这样处理只涉及到一个点向直线投影、一个开方及几个向量操作,代码简单容量理解。

原文地址:https://www.cnblogs.com/opencascade/p/IntAna_Circle_Plane.html

时间: 2024-11-05 00:46:30

OpenCASCADE圆与平面求交的相关文章

OpenCASCADE 平面与球面求交

OpenCASCADE 平面与球面求交 [email protected] OpenCASCADE提供了类IntAna_QuadQuadGeo用来计算两个二次曲面quadric(球面.圆柱面.圆锥面及平面,平面是二次曲面的特例)之间的交线.他们之间可能的结果有: l 一个点 l 一条或两条直线 l 一个点和一条直线 l 圆 l 椭圆 l 抛物线 l 双曲线 将源码结合<高等数学>.<解析几何>等书,可以来学习如何将理论付诸实践.本文主要介绍这个类中平面与球面求交的源码实现.  将源

HDU 3982 半平面交+圆与多边形面积交

Harry Potter and J.K.Rowling Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 685    Accepted Submission(s): 210 Problem Description In July 31st, last month, the author of the famous novel seri

Gym - 101208J 2013 ACM-ICPC World Finals J.Pollution Solution 圆与多边形面积交

题面 题意:给你一个半圆,和另一个多边形(可凹可凸),求面积交 题解:直接上板子,因为其实这个多边形不会穿过这个半圆,所以他和圆的交也就是和半圆的交 打的时候队友说凹的不行,不是板题,后面想想,圆与多边形面积交本来就是拆成有向三角形做的,所以无论凹凸了 1 #include<bits/stdc++.h> 2 #define inf 1000000000000 3 #define M 100009 4 #define eps 1e-12 5 #define PI acos(-1.0) 6 usi

[NetTopologySuite](2)任意多边形求交

任意多边形求交: private void btnPolygon_Click(object sender, EventArgs e) { double[] Xs = new double[] { 30, 260, 130, 350, 250, 330, 320, 180, 250, 50, 70, 60, 30, 260 }; double[] Ys = new double[] { 140, 260, 110, 150, 230, 210, 140, 260 }; int m = Xs.Len

圆内,求离圆心最远的整数点 hiho一下第111周 Farthest Point

1 // 圆内,求离圆心最远的整数点 hiho一下第111周 Farthest Point 2 // 思路:直接暴力绝对T 3 // 先确定x范围,每个x范围内,离圆心最远的点一定是y轴两端的点.枚举x的范围,再比较y 4 // O(n) 5 6 #include <bits/stdc++.h> 7 using namespace std; 8 #define LL long long 9 const double inf = 123456789012345.0; 10 const LL MO

POJ1408-Fishnet(线段求交)

Fishnet Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1788   Accepted: 1144 Description A fisherman named Etadokah awoke in a very small island. He could see calm, beautiful and blue sea around the island. The previous night he had enc

ray与triangle/quad求交二三事

引擎中,ray与quad求交,算法未细看,但有求解二次方程,不解.ray与triangle求交,使用的是97年经典算法,仔细看过论文,多谢小武同学指点,用到了克拉默法则求解线性方程组.想模仿该方法,做ray与quad的求交,发现方程里不仅有u和v,还有uv,没法变换成线性方程组的形式.本以为引擎中quad中四个点可以不共面,看过接口,不然,“不共面和退化的多边形不保证正确结果“.而后又有两个问题,一是,与一个quad求交比与两个三角形求交快吗?二是,如果前面的问题答案为否,即两个三角形更快,为何

三角形求交算法

在光线追踪中,我们常常要处理对于Mesh的渲染,由于Mesh一般由一个个三角形所构成,因此需要我们去计算光线和Mesh每个三角形之间是否存在交点.这可以看做是一个射线和三角形的求交问题.<Fundamentals of Computer Graphics (3rd edition)>中提出了一个in-place的算法,在这里予以介绍. 设光线的起点为e,方向为d,三角形三个顶点为a,b,c.那么可以得到: e+td=a+β(b-a)+γ(c-a) 其中,β.γ为三角形的重心坐标.β+γ<

【模板】线性基求交

线性基求交 struct lb{ ll p[63]; lb(){ memset(p,0,sizeof(p)); } void clear(){ memset(p,0,sizeof(p)); } void ins(ll x){ for(int i=60;i>=0;i--) if((x>>i)&1){ if(!p[i]){ p[i]=x; return; }else x^=p[i]; } } }; lb merge(lb a,lb b){ lb g=lb(),tmp=a; ll cu