神经网络+CNN模型训练总结:

  1. Keras中有一个层是Flatten层,这个层可以把二维的图片转换成一维的数据,因此不需要单独做处理,而是在做完各种数据预处理后,用这个平层,把二维的数据处理成一维。
  2. Keras模型中有对数据进行分类,首先不是一定需要把所有的图片都处理成正方形,长方形的图片一样可以进行各种处理,另外,压缩成小的图片是为了处理量小,快速方便,而不是因为一定要这么做,如果资源够的话,那么就用原图也可以。
  3. 神经网络层的输入必须是numpy数组,或者numpy数组组成的数组。只有这个格式的数据才可以输入模型训练,另外,输入的X的矩阵中,各个维度的长度必须是相同的,不能出现每一行的维度不同,不然会报错。
  4. 神经网络中的loss函数的选择不当,会导致在某些情况下报错,因此要注意Loss函数的选择。
  5. Keras神经网络的两大卡点应该是:1. 各种参数的设置。 2. 输入数据的格式维度问题。
  6. 卷积神经网络和一般的分类器略有不同,卷积神经网络通过卷积核,能够自动提取特征,不需要人工提取特征,因此省去了大量的特征提取工程,但是因此,CNN需要的数据量要远高于神经网络、逻辑回归,SVM等数据分析。极端情况下,逻辑回归,神经网络,SVM等分类器只要模型足够简单,神经元个数较少,其实未必需要大量的样本,也就是说逻辑回归、神经网络和SVM的模型可以很简单。
  7. 图像处理适合用CNN的方法解决。
  8. CNN的原理是通过卷积核来查找图像某方面的特征,然后将这些特征输入到模型里面去,和结果建立一种关系,因此是对特征的分类。
  9. CNN只需要输入卷积核的个数和步长,模型就会自动生成卷积核,然后提取特征,不需要人为去设置卷积矩阵。

原文地址:https://www.cnblogs.com/lhongly/p/11106444.html

时间: 2024-11-02 17:30:01

神经网络+CNN模型训练总结:的相关文章

卷积神经网络(CNN)模型结构

卷积神经网络(CNN)模型结构 转载:http://www.cnblogs.com/pinard/p/6483207.html 看到的一片不错的文章,先转过来留着,怕以后博主删了.哈哈哈 在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型结构做一个总结. 在学习CNN前,推荐大家

深度学习之卷积神经网络CNN及tensorflow代码实现示例

一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的.当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×28 的手写数字图片,输入层的神经元就有784个,如下图所示: 若在中间只使用一层隐藏层,参数 w 就有 784×15=11760 多个:若输入的是28×28 带有颜色的RGB格式的手写数字图片,输入神经元就有28×28×3=2352 个-- .这很容易看出使用全连接神经网络处理图像中的需要训

循环神经网络(RNN)模型与前向反向传播算法

在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域. 1. RNN概述 在前面讲到的DNN和CNN中,训练样本的输入和输出是比较的确定的.但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不

卷积神经网络(CNN)学习笔记1:基础入门

卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Views 概述 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的.CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的

卷积神经网络CNN总结

从神经网络到卷积神经网络(CNN)我们知道神经网络的结构是这样的: 那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进.比如下图中就多了许多传统神经网络没有的层次. 卷积神经网络的层级结构      ? 数据输入层/ Input layer ? 卷积计算层/ CONV layer ? ReLU激励层 / ReLU layer ? 池化层 / Pooling layer ? 全连接层 / FC layer 1.数据输入层该层要

深度学习(DL)与卷积神经网络(CNN)学习笔记随笔-01-CNN基础知识点

第一天<CNN基础知识点>From:Convolutional Neural Networks (LeNet) 神经认知机. CNN的灵感来源在诸多论文中已经讲得很全面了,就是伟大的生物发现Receptive Field(感受野细胞).根据这个概念提出了神经认知机.它的主要作用就是Recept部分图像信息(或特征),然后通过分层递交相连,将各个局部特征组合成整个图像特征. 需要仔细阅读的论文包括: (1) 第一篇关于感受野功能的论文Receptive fields and functional

《神经网络与深度学习》(五) 卷积神经网络CNN及tensorflow代码实现示例

转自:http://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的.当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×28 的手写数字图片,输入层的神经元就有784个,如下图所示: 若在中间只使用一层隐藏层,参数 w 就有 784×15=11760 多个:若输入的是28×28 带有颜色的RGB格式的

总结近期CNN模型的发展(一)---- ResNet [1, 2] Wide ResNet [3] ResNeXt [4] DenseNet [5] DPNet [9] NASNet [10] SENet [11] Capsules [12]

总结近期CNN模型的发展(一) from:https://zhuanlan.zhihu.com/p/30746099 余俊 计算机视觉及深度学习 1.前言 好久没有更新专栏了,最近因为项目的原因接触到了PyTorch,感觉打开了深度学习新世界的大门.闲暇之余就用PyTorch训练了最近在图像分类上state-of-the-art的CNN模型,正好在文章中总结如下: ResNet [1, 2] Wide ResNet [3] ResNeXt [4] DenseNet [5] DPNet [9] N

简单的卷积神经网络(CNN)的搭建

卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现.与普通神经网络非常相似,它们都由具有可学习的权重和偏置常量(biases)的神经元组成.每个神经元都接收一些输入,并做一些点积计算,输出是每个分类的分数,普通神经网络里的一些计算技巧到这里依旧适用. 卷积神经网络通常包含以下几种层: 卷积层(Convolutional layer),卷积神经网路中每层卷积层由若干卷积单