Polya定理与Burnside引理

Burnside引理

  • 公式
    \(L=\frac{1}{|G|}\sum_{i=1}^{|G|}D_{G_i}\)
  • 一些定义
    \(E_i\) 表示与\(i\)同类的方案
    \(Z_i\) 表示使\(i\)不变的置换
    \(G\) 表示所有的置换方法
    \(D_i\) 表示第\(i\)种置换能使多少方案不变
    \(n\) 表示方案总数
    \(L\) 表示本质不同的方案数
  • 引理的引理
    \(|E_i|*|Z_i|=|G|\) \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ //\)这个我不会证明
    \(n=\sum_{i=1}^L|E_i|\) \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ //\)这个就是按照定义,注意的是\(E_i\)表示的是本质不同的第\(i\)种方案
    \(\sum_{i=1}^n|Z_i|=\sum_{i=1}^{|G|}D_{G_i}\)\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ //\)这个也是按照定义,就是换了个计算方法,计算的是同样的东西
  • Burnside引理
    \(\sum_{j=1}^n|Z_j|=\sum_{i=1}^L\sum_{j \in E_i}|Z_j|=\sum_{i=1}^L|E_i|·|Z_i|=L·|G|\)
    \(\therefore L·|G|=\sum_{j=1}^{|G|}D_{G_i}\)
    \(\therefore L=\frac{1}{|G|}\sum_{i=1}^{|G|}D_{G_i}\)

Polya定理

  • 公式
    \(L=\frac{1}{|G|}\sum_{i=1}^{|G|}m^{C_{G_i}}\)
    其中\(m\)为颜色个数,\(C_i\)为第\(i\)种置换有多少个循环

一个环的循环个数

一个项链有\(n\)个珠子,用\(k\)种颜色涂染会形成多少种不同的项链
两条可通过旋转得到的项链为相同项链

有\(n\)种置换方式\((\)每次旋转\(0,1,2...n\)个珠子\()\)
对于一次旋转\(i\)个珠子的方式,有\(gcd(i,n)\)个循环
证明
每个循环有的珠子的个数因是一样的
假设从\(x\)号珠子开始置换,循环结束时一定回到\(x\)号珠子 如\(x->(x+i-1)\%n+1->(x+2i-1)\%n+1->x\)
假设循环有\(p\)个珠子,那么循环\(p\)次就回到原来的珠子,此时转过\(i\)和\(n\)的最小公倍数个珠子
\(p·i=i·n/gcd(i,n) \ \ \ k\in Z\)
\(\therefore p=n/gcd(i,n)\)
每个循环有\(p\)个珠子那么就有\(n/p=gcd(i,n)\)个循环

原文地址:https://www.cnblogs.com/Morning-Glory/p/11106033.html

时间: 2024-10-08 18:36:05

Polya定理与Burnside引理的相关文章

Polya定理,Burnside引理(转)

设G是一个集合,*是G上的二元运算,如果(G,*)满足下面的条件: 封闭性:对于任何a,b∈G,有a*b∈G; 结合律:对任何a,b,c∈G有(a*b)*c=a*(b*c); 单位元:存在e∈G,使得对所有的a∈G,都有a*e=e*a=a; 逆元:对于每个元素a∈G,存在x∈G,使得a*x=x*a=e,这个时候记x为a-1,称为a的逆元,那么则称(G,*)为一个群. 例:G={0,1,2,3,4....n-1}那么它在mod n加法下是一个群. 群元素的个数有限,称为有限群,且其中元素的个数称为

Polya 定理入门[Burnside引理,Polya定理,欧拉函数]

$这篇blog重点讨论Polya的应用, 更详细的证明请百度 .$ ___ $Burnside引理$ $$L=\frac{1}{|G|}\sum_{i=1}^{|G|}D(a_i)$$ $L$: 本质不同的方案数. $G$: 置换群集合. $a_i$: 置换群中的第 $i$ 个置换. $D(a_i)$: 进行 $a_i$ 这个置换, 状态不会变化的方案 数量. 该引理与下方内容没有太大关系, 可以暂时忽略. ___ $Problem$ 链接 有 $N$ 个石子围成一圈, 使用 $M$ 种颜色染色

Burnside引理与Polya定理

Burnside引理与Polya定理 Burnside引理与Polya定理是有关组合数学的两条十分重要的定理(引理),但是网上的一些资料大多晦涩难懂或者与实际并不相关联,因此在这里做一些浅显的解读,希望通过此文章可以让这两条定理(引理)能够发挥其作用. PS:引理与定理的区别: Ψ引理是数学中为了取得某个更好的定理而作为步骤被证明的命题,其意义并不在于自身被证明,而在于为达成最终定理作出贡献. Ψ一个引理可用于证明多个定理.数学中存在很多著名的引理,这些引理可能对很多问题的解决有帮助.例如欧几里

[BZOJ1004] [HNOI2008] Cards (Polya定理)

Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决

【群论】polya定理

对Polya定理的个人认识     我们先来看一道经典题目:     He's Circles(SGU 294)         有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不能旋转重复就称之为本质不同) 输入样例:4 输出样例:6 那么要怎么办呢?暴力显然暴不出来…… 我们可以考虑使用置换群. 我们有两种算法: ①Burnside引理: 答案直接为1/|G|*(D(a1)+D(a2)+D(a3)+……+D(as)) 其中D(ak)为在进行置换群置换操作ak下不变的元素的

置换群和Burnside引理,Polya定理

定义简化版: 置换,就是一个1~n的排列,是一个1~n排列对1~n的映射 置换群,所有的置换的集合. 经常会遇到求本质不同的构造,如旋转不同构,翻转交换不同构等. 不动点:一个置换中,置换后和置换前没有区别的排列 Burnside引理:本质不同的方案数=每个置换下不动点的个数÷置换总数(一个平均值) Polya定理:一个置换下不动点的个数=颜色^环个数.(辅助Burnside引理,防止枚举不动点复杂度过高) 这篇文章写得很详细了(具体的在此不说了): Burnside引理与Polya定理 **特

hdu 5868 2016 ACM/ICPC Asia Regional Dalian Online 1001 (burnside引理 polya定理)

Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 208    Accepted Submission(s): 101 Problem Description You may not know this but it's a fact that Xinghai Square is

BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的染色方案视为等价的,求等价类计数. 分析 给出置换求等价类计数,用Burnside引理:等价类计数=(每一个置换不动点的和)/置换数.(不知道的建议去看白书) 其中不动点是指一个染色方案经过置换以后染色与之前完全相同. 1.求不动点个数. 不动点的话同一个循环内的每一个点的颜色必须相同(否则不同颜色

Burnside 引理 / Pólya 定理

\(A\) 和 \(B\) 为有限集合 \(X=B^A\) 表示所有 \(A\) 到 \(B\) 的映射 \(G\) 是 \(A\) 上的置换群,\(X/G\) 表示 \(G\) 作用在 \(X\) 上的等价类的集合 \(X^g=\{x|x\in X,g(x)=x\}\) Burnside 引理 \[ |X/G|=\frac{1}{|G|}\sum_{g\in G}|X^g| \] \(c(g)\) 表示置换 \(g\) 能拆分成的不相交的循环置换的数量 Pólya 定理 \[ |X/G|=\f