关于C#多线程、易失域、锁的分享

一、多线程

  windows系统是一个多线程的操作系统。一个程序至少有一个进程,一个进程至少有一个线程。进程是线程的容器,一个C#客户端程序开始于一个单独的线程,CLR(公共语言运行库)为该进程创建了一个线程,该线程称为主线程。例如当我们创建一个C#控制台程序,程序的入口是Main()函数,Main()函数是始于一个主线程的。它的功能主要 是产生新的线程和执行程序。

  在软件中,如果有一种操作可以被多人同时调用,我们就可以创建多个线程同时处理,以提高任务执行效率。这时,操作就被分配到各个线程中分别执行。

在C#中我们可以使用Thread类和ThreadStart委托,他们都定义在System.Threading命名空间中。

  ThreadStart委托类型用于定义在线程中的工作,就像我们在使用其他的委托类型一样,可以使用方法名来创建此委托类型对象,如“new ThreadStart(test)”

多线程优点:
(1)多线程技术使程序的响应速度更快 ,因为用户界面可以在进行其它工作的同时一直处于活动状态;
(2)多线程可以提高CPU的利用率,因为当一个线程处于等待状态的时候,CPU会去执行另外的线程;
(3)占用大量处理时间的任务可以定期将处理器时间让给其它任务;
(4)可以随时停止任务;
(5)可以分别设置各个任务的优先级以优化性能。

多线程缺点:
(1)等候使用共享资源时造成程序的运行速度变慢。这些共享资源主要是独占性的资源 ,如写文件等。
(2)对线程进行管理要求额外的 CPU开销。线程的使用会给系统带来上下文切换的额外负担。当这种负担超过一定程度时,多线程的特点主要表现在其缺点上,比如用独立的线程来更新数组内每个元素。
(3)线程的死锁。即较长时间的等待或资源竞争以及死锁等多线程症状。
(4)对公有变量的同时读或写。当多个线程需要对公有变量进行写操作时,后一个线程往往会修改掉前一个线程存放的数据,从而使前一个线程的参数被修改;另外 ,当公用变量的读写操作是非原子性时,在不同的机器上,中断时间的不确定性,会导致数据在一个线程内的操作产生错误,从而产生莫名其妙的错误,而这种错误是程序员无法预知的。

线程生命周期

线程生命周期开始于 System.Threading.Thread 类的对象被创建时,结束于线程被终止或完成执行时。

下面列出了线程生命周期中的各种状态:

    • 未启动状态:当线程实例被创建但 Start 方法未被调用时的状况。
    • 就绪状态:当线程准备好运行并等待 CPU 周期时的状况。
    • 不可运行状态:下面的几种情况下线程是不可运行的:
      • 已经调用 Sleep 方法
      • 已经调用 Wait 方法
      • 通过 I/O 操作阻塞
    • 死亡状态:当线程已完成执行或已中止时的状况

Thread 类常用的属性和方法

  

最简单的多线程例子,代码如下:

static void Main(string[] agrs)
        {
            ThreadStart threadWork = new ThreadStart(test);
            Thread t1 = new Thread(threadWork);
            t1.Name = "t1";
            Thread t2 = new Thread(threadWork);
            t2.Name = "t2";
            Thread t3 = new Thread(threadWork);
            t3.Name = "t3";
            //开始执行
            t1.Start();
            t2.Start();
            t3.Start();
            Console.ReadKey();
        }
        static public void  test(){
            Console.WriteLine("{0},hello,小菜鸟",Thread.CurrentThread.Name);
        }

使用多线程另一个重要的问题就是对于公共资源分配的控制,比如,火车的座位是有限的,在不同购票点买票时,就需要对座位资源进行合理分配;在电影院看电影也是这样的,座位只有那么多,我们不可能100个座位卖出200张票,这样是不可以的也是不应该的,那么接下来我们就要看看该如何解决这个问题。

二、易失域

对于类中的成员使用volatile修饰符,它就会被声明为易失域。对于易失域,在多线程环境中,每个线程中对此域的读取(易失读取,volatile read)和写入(易失写入,volatile write)操作都会观察其他线程中的操作,并进行操作的顺序执行,这样就保持易失域使用的一致性了。

volatile的作用是: 作为指令关键字,确保本条指令不会因编译器的优化而省略,且要求每次直接读值。多线程的程序,共同访问的内存当中,多个线程都可以操纵,从而无法判定何时这个变量会发生变化

可以这样简单理解:线程是并行的,但对volatile的访问是顺序排除的,避免出现脏值。

理解:

Volatile 字面的意思时易变的,不稳定的。在C#中也差不多可以这样理解。

编译器在优化代码时,可能会把经常用到的代码存在Cache里面,然后下一次调用就直接读取Cache而不是内存,这样就大大提高了效率。但是问题也随之而来了。

在多线程程序中,如果把一个变量放入Cache后,又有其他线程改变了变量的值,那么本线程是无法知道这个变化的。它可能会直接读Cache里的数据。但是很不幸,Cache里的数据已经过期了,读出来的是不合时宜的脏数据。这时就会出现bug。

用Volatile声明变量可以解决这个问题。用Volatile声明的变量就相当于告诉编译器,我不要把这个变量写Cache,因为这个变量是可能发生改变的。

下面贴栗子代码:

using System;
using System.Threading;

namespace demoVolatile
{
    class Program
    {
        //多个线程访问的变量,标记为Volatile
        //在这里如果不标记可能会卖出不止10张票
        volatile static int TicketCount = 10;
        static void SellTicket()
        {
            while (TicketCount > 0)
            {
                TicketCount--;
                Console.WriteLine("{0} 卖出了一张票", Thread.CurrentThread.Name);
            }
            Console.WriteLine("{0} 下班了", Thread.CurrentThread.Name);
        }
        static void Main(string[] args)
        {
            ThreadStart threadWork = new ThreadStart(SellTicket);
            Thread t1 = new Thread(threadWork);
            t1.Name = "t1";
            Thread t2 = new Thread(threadWork);
            t2.Name = "t2";
            Thread t3 = new Thread(threadWork);
            t3.Name = "t3";
            //开始执行
            t1.Start();
            t2.Start();
            t3.Start();
            Console.ReadKey();
        }
    }
}

三、锁

我们都知道,lock 关键字可以用来确保代码块完成运行,而不会被其他线程中断。也就是,说在多线程中,使用lock关键字,可以让被lock的对象,一次只被一个线程使用。

lock语句根本使用的就是Monitor.Enter和Monitor.Exit,也就是说lock(this)时执行Monitor.Enter(this),大括号结束时执行Monitor.Exit(this). 也就是说,Lock关键字,就是一个语法糖而已。

使用lock需要注意的地方:
1.lock不能锁定空值某一对象可以指向Null,但Null是不需要被释放的。(请参考:认识全面的null)
2.lock不能锁定string类型,虽然它也是引用类型的。因为字符串类型被CLR“暂留”
3.lock锁定的对象是一个程序块的内存边界
4.值类型不能被lock,因为前文标红字的“对象被释放”,值类型不是引用类型的
5.lock就避免锁定public 类型或不受程序控制的对象。

using System;
using System.Threading.Tasks;

public class Account
{
    private readonly object balanceLock = new object();
    private decimal balance;

    public Account(decimal initialBalance)
    {
        balance = initialBalance;
    }

    public decimal Debit(decimal amount)
    {
        lock (balanceLock)
        {
            if (balance >= amount)
            {
                Console.WriteLine($"Balance before debit :{balance, 5}");
                Console.WriteLine($"Amount to remove     :{amount, 5}");
                balance = balance - amount;
                Console.WriteLine($"Balance after debit  :{balance, 5}");
                return amount;
            }
            else
            {
                return 0;
            }
        }
    }

    public void Credit(decimal amount)
    {
        lock (balanceLock)
        {
            Console.WriteLine($"Balance before credit:{balance, 5}");
            Console.WriteLine($"Amount to add        :{amount, 5}");
            balance = balance + amount;
            Console.WriteLine($"Balance after credit :{balance, 5}");
        }
    }
}

class AccountTest
{
    static void Main()
    {
        var account = new Account(1000);
        var tasks = new Task[100];
        for (int i = 0; i < tasks.Length; i++)
        {
            tasks[i] = Task.Run(() => RandomlyUpdate(account));
        }
        Task.WaitAll(tasks);
    }

    static void RandomlyUpdate(Account account)
    {
        var rnd = new Random();
        for (int i = 0; i < 10; i++)
        {
            var amount = rnd.Next(1, 100);
            bool doCredit = rnd.NextDouble() < 0.5;
            if (doCredit)
            {
                account.Credit(amount);
            }
            else
            {
                account.Debit(amount);
            }
        }
    }
}

作用:当同一个资源被多个线程读,少个线程写的时候,使用读写锁

引用:https://blog.csdn.net/weixin_40839342/article/details/81189596

问题: 既然读读不互斥,为何还要加读锁

答:     如果只是读,是不需要加锁的,加锁本身就有性能上的损耗

如果读可以不是最新数据,也不需要加锁

如果读必须是最新数据,必须加读写锁

读写锁相较于互斥锁的优点仅仅是允许读读的并发,除此之外并无其他。

注意:不要使用ReaderWriterLock,该类有问题

ok,今天的分享就到这里了,如有错误的地方请指出,谢谢。

原文地址:https://www.cnblogs.com/guhuazhen/p/11239636.html

时间: 2024-08-29 00:46:51

关于C#多线程、易失域、锁的分享的相关文章

Netty:一种非易失堵塞client/server相框

Netty:一种非易失堵塞client/server相框 作者:chszs.转载需注明.博客主页:http://blog.csdn.net/chszs Netty是一个异步事件驱动的网络应用框架,为Java网络应用的开发带来了一些新活力.Netty由协议server和client所组成.可用于高速开发可维护的高性能软件.Netty应用框架及其工具简化了网络编程,并且由Netty社区进行维护. Netty还被归类为NIOclient/server框架.用它能够高速.简易地开发网络应用.使得TCP和

非易失内存技术NVDIMM

从技术的角度来看,NAND Flash闪存介质虽然存在擦写次数寿命的问题,但是,配合软件算法.系统级的数据保护技术,NAND Flash的寿命问题变得不再是一个棘手的问题,而NAND Flash更多的优势成为该项技术向前推进的重要动力.采用NAND Flash构建的SSD正快速的替代传统磁盘,已经大面积的在互联网领域得到应用,并且不断向对数据可靠性有要求的企业级市场渗透. SSD和传统磁盘相比有几个非常独特的特性.第一个特点就是SSD的具有非常好的读写性能,特别在随机读写性能方面远远超过传统磁盘

基于pstore 和 ramoops实现在非易失性内存中保存panic日志

基于pstore和 ramoops实现在非易失性内存中保存panic日志 具体步骤如下 0.确定地址范围 需求提前知道用来保存panic日志的非易失性内存的起始地址和长度.比如笔者用到的那部分内存的起始地址是0x11ff000000,长度是16M. 2.修改内核 保证内核配置选项中选上了ramoops驱动支持: 生成驱动加载过程中,如果发现对独立的非易失性存储加载驱动失败,检查是否需要修改内核驱动,特别是fs/pstore/ram_core.c中的request_mem_region()函数,然

展望由非易失性设备构成的未来存储

 展望由非易失性设备构成的未来存储 Edward Sharp "愿你生活的时代充满趣味".不知您是否注意到,而今的IT世界已然如此,充斥着诸如云.移动.大数据.内存数据库.NoSQL.远程直接内存访问(RDMA).叠瓦式磁记录(SMR)硬盘.非易失性存储(NVM)以及其他不胜列数的新技术.正是由于这些新科技与技术让使用者能以更精简的资源来实现更为强大的功能,我们面临的世界正经历着天翻地覆的变化.这样的变革对现有的行业既是一种威胁,但另一方面,对于敏捷.专注而果敢的公司而言,恰恰

“非易失性内存”嫁接“内存计算”——高速安全的大数据时代来临

“非易失性内存”嫁接“内存计算” ——高速安全的大数据时代来临 题记 数据库奠基人Jim Gray:“磁带已经死了,磁盘已经落伍,闪存成为存储,内存才是王道”.“不管磁盘是否消融,闪存都是将来的一个趋势.” 石油一直直接影响着世累经济的发展速度和发展水平,现在,信息将发挥同样的作用.<经济学人>表示:“数据和信息日益成为商业的新能源,是一种与资本.劳动力并列的新经济元素”. 数据保护 大数据时代的机遇和挑战 大数据“风华正茂” 大数据时代,每两天的数据量就达到2ZB,相当于20世纪前人类文明所

EVERSPIN非易失性MRAM具吸引力的嵌入式技术

相关研究指出,如果以嵌入式MRAM取代微控制器中的eFlash和SRAM,可节省高达90%的功耗:如果采用单一晶体管MRAM取代六个晶体管SRAM,则可实现更高的位元密度和更小的芯片尺寸,这些功率与面积成本优势将使MRAM成为边缘侧设备的有力竞争者.而相较于传统的NAND闪存,PCRAM或ReRAM存储级存储器更可提供超过10倍以上的存取速度,更适合在云端对资料进行存储. MRAM是一种非易失性存储技术,该技术具备接近静态随机存储器的高速读取写入能力,快闪存储器的非易失性.容量密度和与DRAM几

航空航天专用Everspin非易失性MRAM存储器

TAMU是由瑞典乌普萨拉的?ngstr?m航空航天公司(?AC)开发的高级磁力计子系统.TAMU的目的是提供地球磁场的磁力计数据,以便与子画面观测相关.实验性TAMU由使用领先技术制造的四种类型的设备组成:3轴地磁传感器,通过3D封装系统技术制造的MPU芯片,制造的4Mbit MRAM(磁性随机存取存储器)芯片由Everspin Technologies和IMU(惯性测量单元)芯片组成. ?ACMicrotec在其Tohoku-?ACMEMS单元(TAMU)(磁力计子系统)中使用了Everspi

Java多线程4:synchronized锁机制

脏读 一个常见的概念.在多线程中,难免会出现在多个线程中对同一个对象的实例变量进行并发访问的情况,如果不做正确的同步处理,那么产生的后果就是"脏读",也就是取到的数据其实是被更改过的. 多线程线程安全问题示例 看一段代码: public class ThreadDomain13 { private int num = 0; public void addNum(String userName) { try { if ("a".equals(userName)) {

java多线程并发系列之锁的深入了解

上一篇博客中 : java多线程.并发系列之 (synchronized)同步与加锁机制 .介绍了java中Synchronized和简单的加锁机制,在加锁的模块中介绍了 轮询锁和定时锁,简单回顾下 轮询锁:利用tryLock来获取两个锁,如果不能同时获得,那么回退并重新尝试. 定时锁:索取锁的时候可以设定一个超时时间,如果超过这个时间还没索取到锁,则不会继续堵塞而是放弃此次任务. 锁的公平性 在公平的锁上,线程将按照它们发出请求的顺序来获取锁 上面似乎忘记了还有一种可中断锁和可选择粒度锁 可中