题目大意是有N个数,分成K段,每一段的花费是这个数里相同的数的数对个数,要求花费最小
如果只是区间里相同数对个数的话,莫队就够了
而这里是!边单调性优化边莫队(只是类似莫队)!而移动的次数和分治的复杂度是一样的!
这个时候就不能用单调栈+二分了,得用分治
分治的方法就是\(Solve(l,r,ql,qr)\)表示我想计算区间\([l,r]\)的答案,然后转移过来的区间在\([ql,qr]\)
暴力计算出\(f[mid]\)的值,找到最优转移点是\(k\),然后分成\(Solve(l,mid,ql,k)\)和\(Solve(mid +1,r,k,qr)\)做下去
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <bitset>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
int N,K,a[MAXN],cnt[MAXN];
int64 f[22][MAXN],w = 0;
int nw,p,q;
int64 work(int l,int r) {
while(q < r) w += cnt[a[++q]]++;
while(p > l) w += cnt[a[--p]]++;
while(p < l) w -= --cnt[a[p++]];
while(q > r) w -= --cnt[a[q--]];
return w;
}
int64 Calc(int a,int b) {
return f[nw - 1][a] + work(a + 1,b);
}
void Solve(int l,int r,int ql,int qr) {
if(l > r) return;
int mid = (l + r) >> 1,p = min(qr,mid - 1);
int k;
f[nw][mid] = Calc(ql,mid);k = ql;
for(int i = ql + 1 ; i <= p ; ++i) {
int64 x = Calc(i,mid);
if(x <= f[nw][mid]) {
f[nw][mid] = x;k = i;
}
}
Solve(l,mid - 1,ql,k);
Solve(mid + 1,r,k,qr);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
read(N);read(K);
for(int i = 1 ; i <= N ; ++i) {read(a[i]);f[1][i] = f[1][i - 1] + cnt[a[i]]++;}
for(int i = 2 ; i <= K ; ++i) {
memset(cnt,0,sizeof(cnt));
p = 1;q = 0;w = 0;
nw = i;
Solve(0,N,0,N);
}
out(f[K][N]);enter;
}
原文地址:https://www.cnblogs.com/ivorysi/p/11140649.html
时间: 2024-10-06 21:53:24