Pytorch(一)

一、Pytorch介绍

Pytorch 是Torch在Python上的衍生物

和Tensorflow相比:

Pytorch建立的神经网络是动态的,而Tensorflow建立的神经网络是静态的

Tensorflow的高度工业化,它的底层代码很难看懂

官网:http://pytorch.org/

Pytorch主要有两个模块:

一个是torch,一个是torchvision,torch是主模块,用来搭建神经网络。torchvision是辅模块,有数据库,还有一些已经训练好的神经网络等着你直接用比如(VGG,AlexNet,ResNet)

二、基础知识

1.与Numpy交互

(1)数据转换

import torch
import numpy as np

# 创建一个np array
a = np.array([[1,2], [3,4]])
b = torch.from_numpy(a)      # 根据np array创建torch 张量
c = b.numpy()                # 根据张量, 导出np array

(2)数据运算

torch中tensor的运算与numpy array运算相似,比如

np.abs()--->torch.abs()

np.sin()---->torch.sin()等

2.变量Variable

(1)Variable组成

在Torch中Variable由三部分组成:data部分是Torch的Tensor,grad部分是这个变量的梯度缓存区,creator部分是这个Variable的创造节点,如果用一个Variable进行计算,那返回的也是同类型的Variable

(2)使用

导入

import torch

from torch.autograd import Variable

定义Variable的同时有一项requires_grad是关于参不参与误差反向传播,要不要计算梯度

注意Variable 和Tensor的区别:

Variable计算时,它在后台默默地搭建着一个庞大地系统,叫做计算图。computional graph将所有地计算步骤(节点)都连接起来,最后进行误差反向传递地时候,一次性将所有Variable里面地修改梯度都计算出来,而tensor只是一个数据结构。

构建计算图

y = w * x + b # y = 2 * x + 3

(3)计算梯度

# 对y求梯度
y.backward()

# 打印一下各个变量的梯度
print(x.grad)    # y对x的梯度: x.grad = 2
print(w.grad)    # y对w的梯度: w.grad = 1
print(b.grad)    # y对b的梯度: b.grad = 1

(4)Variable里面地数据

直接print(variable)只会输出Variable形式地数据,在很多时候是用不了地(比如想要用plt绘图),所以我们要转换一下,将它变成tensor形式

获取tensor数据:Print(variable.data),也可以将其转为numpy形式:print(variable.data.numpy())

3.Pytorch中的激活函数

导入包:import torch.nn.functional as F

平时常用的:relu、sigmoid,tanh,softplus

激活函数:激活函数的输入与输出都是variable

4.Pytorch中的数据加载器和batch

(1)生成数据生成并构建Dataset子集

import torch
import torch.utils.data as Data

torch.manual_seed(1)    

BATCH_SIZE = 5

x = torch.linspace(1, 10, 10)       # 输入数据
y = torch.linspace(10, 1, 10)       # 输出数据

# 打包成TensorDataset对象,成为标准数据集
torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y)

(2)生成batch数据

PyTorch用类torch.utils.data.DataLoader加载数据,并对数据进行采样,生成batch迭代器

# 创建数据加载器
loader = Data.DataLoader(
    dataset=torch_dataset,      # TensorDataset类型数据集
    batch_size=BATCH_SIZE,      # mini batch size
    shuffle=True,               # 设置随机洗牌
    num_workers=2,              # 加载数据的进程个数
)

for epoch in range(3):   # 训练3轮
    for step, (batch_x, batch_y) in enumerate(loader):  # 每一步
        # 在这里写训练代码...
        print(‘Epoch: ‘, epoch, ‘| Step: ‘, step, ‘| batch x: ‘, batch_x.numpy(), ‘| batch y: ‘, batch_y.numpy())

6.GPU运算

Pytorch中使用GPU计算简单,通过调用.cuda()方法,很容易实现GPU支持

torch.cuda会记录当前选择的GPU,并且分配的所有CUDA张量将在上面创建

可以使用torch.cuda.device上下文管理器更改所选设备

7.加载预训练模型

import torchvision

# 下载并加载resnet.
resnet = torchvision.models.resnet18(pretrained=True)

# 如果你只想要finetune模型最顶层的参数
for param in resnet.parameters():
    # 将resent的参数设置成不更新
    param.requires_grad = False

# 把resnet的全连接层fc 替换成自己设置的线性层nn.Linear
# 比如说,输入维度是resnet.fc.in_features, 输出是100维
resnet.fc = nn.Linear(resnet.fc.in_features, 100) 

# 测试一下
images = Variable(torch.randn(10, 3, 256, 256))
outputs = resnet(images)
print (outputs.size())   # (10, 100)

8.简单回归

import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt

torch.manual_seed(1)

x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # 张量 x: (100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())                 # 加入噪声的张量 y: (100, 1)

# 将张量转为 Variable
x, y = Variable(x), Variable(y)

# 画一下
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()

class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)   # 隐层
        self.relu = torch.nn.ReLU()                          # 选择激活层
        self.predict = torch.nn.Linear(n_hidden, n_output)   # 输出层

    def forward(self, x):
        x = self.hidden(x)                                   # 计算隐层
        x = self.relu(x)                                     # 计算激活层
        x = self.predict(x)                                  # 输出层
        return x
net = Net(n_feature=1, n_hidden=10, n_output=1)              # 定义网络
print(net)
                                              #打印网络结构
# 选择损失函数和优化方法
loss_func = torch.nn.MSELoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
plt.ion()   # hold住图
for t in range(100):
    prediction = net(x)                                      # 用网络预测一下
    loss = loss_func(prediction, y)                          # 计算损失
    optimizer.zero_grad()                                    # 清除上一步的梯度
    loss.backward()                                          # 反向传播, 计算梯度
    optimizer.step()                                         # 优化一步
    if t % 5 == 0:
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), ‘r-‘, lw=5)
        plt.text(0.5, 0, ‘Loss=%.4f‘ % loss.data[0], fontdict={‘size‘: 20, ‘color‘: ‘red‘})
        plt.pause(1)
        print(t)
plt.ioff()
plt.show()

9.快速构建序列网络

torch.nn.Sequential是一个Sequential容器,模块将按照构造函数中传递的顺序添加到模块中。另外 ,也可以传入一个有序模块。

# Sequential使用实例

model = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )

# Sequential with OrderedDict使用实例
model = nn.Sequential(OrderedDict([
          (‘conv1‘, nn.Conv2d(1,20,5)),
          (‘relu1‘, nn.ReLU()),
          (‘conv2‘, nn.Conv2d(20,64,5)),
          (‘relu2‘, nn.ReLU())
        ]))

为了方便比较,我们先用普通方法搭建一个神经网络。



import torch

# 继承方式实现, 能够自定义forward
class ModuleNet(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(ModuleNet, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)   # 隐层
        self.relu = torch.nn.ReLU()                          # 选择激活层
        self.predict = torch.nn.Linear(n_hidden, n_output)   # 输出层

    def forward(self, x):
        x = self.hidden(x)                                   # 计算隐层
        x = self.relu(x)                                     # 计算激活层
        x = self.predict(x)                                  # 输出层
        return x

module_net = ModuleNet(1, 10, 1)

上面ModuleNet继承了一个torch.nn.Module中的神经网络结构, 然后对其进行了修改;接下来我们来使用torch.nn.Sequential来快速搭建一个神经网络。

#用序列化工具, 给予Pytorch 内部集成的网络层 快速搭建
seq_net = torch.nn.Sequential(
    torch.nn.Linear(1, 10),
    torch.nn.ReLU(),
    torch.nn.Linear(10, 1)
)

我们来打印一下2个神经网络的数据,查看区别:


print(module_net)     # 打印网络结构
"""
ModuleNet (
  (hidden): Linear (1 -> 10)
  (relu): ReLU ()
  (predict): Linear (10 -> 1)
)
"""

print(seq_net)        # 打印网络结构
"""
Sequential (
  (0): Linear (1 -> 10)
  (1): ReLU ()
  (2): Linear (10 -> 1)
)
"""



原文地址:https://www.cnblogs.com/yifdu25/p/8975250.html

时间: 2024-10-03 06:48:02

Pytorch(一)的相关文章

pytorch 学习笔记之编写 C 扩展,又涨姿势了

pytorch利用CFFI 进行 C 语言扩展.包括两个基本的步骤(docs): 编写 C 代码: python 调用 C 代码,实现相应的 Function 或 Module. 在之前的文章中,我们已经了解了如何自定义 Module.至于 [py]torch 的 C 代码库的结构,我们留待之后讨论: 这里,重点关注,如何在 pytorch C 代码库高层接口的基础上,编写 C 代码,以及如何调用自己编写的 C 代码. 官方示例了如何定义一个加法运算(见 repo).这里我们定义ReLU函数(见

(转) The Incredible PyTorch

转自:https://github.com/ritchieng/the-incredible-pytorch The Incredible PyTorch What is this? This is inspired by the famous Awesome TensorFlow repository where this repository would hold tutorials, projects, libraries, videos, papers, books and anythi

解决运行pytorch程序多线程问题

当我使用pycharm运行  (https://github.com/Joyce94/cnn-text-classification-pytorch )  pytorch程序的时候,在Linux服务器上会开启多个进程,占用服务器的大量的CPU,在windows10上运行此程序的时候,本机的CPU和内存会被吃光,是因为在train.py中有大量的数据训练处理,会开启多个进程,占用大量的CPU和进程. 本机window10 linux服务器开启了多个进程 Linux服务器占用大量CPU 在pytor

PyTorch学习笔记之nn的简单实例

method 1 1 import torch 2 from torch.autograd import Variable 3 4 N, D_in, H, D_out = 64, 1000, 100, 10 5 x = Variable(torch.randn(N, D_in)) 6 y = Variable(torch.randn(N, D_out), requires_grad=False) 7 8 # define our model as a sequence of layers 9 m

pytorch中设定使用指定的GPU

转自:http://www.cnblogs.com/darkknightzh/p/6836568.html PyTorch默认使用从0开始的GPU,如果GPU0正在运行程序,需要指定其他GPU. 有如下两种方法来指定需要使用的GPU. 1. 类似tensorflow指定GPU的方式,使用CUDA_VISIBLE_DEVICES. 1.1 直接终端中设定: CUDA_VISIBLE_DEVICES=1 python main.py 1.2 python代码中设定: import os os.env

一线开发者在Reddit上讨论深度学习框架:PyTorch和TensorFlow到底哪个更好?

本文标签:   机器学习 TensorFlow Google深度学习框架 分布式机器学习 PyTorch   近日,Reddit用户 cjmcmurtrie 发了一个主题为「PyTorch vs. TensorFlow」的讨论帖,想要了解这两大流行的框架之间各自有什么优势. 原帖地址:https://redd.it/5w3q74 帖子一楼写道: 我还没有从 Torch7 迁移到 TensorFlow.我玩过 TensorFlow,但我发现 Torch7 更加直观(也许是我玩得不够?).我也尝试了

Ubutnu16.04安装pytorch

1.下载Anaconda3 首先需要去Anaconda官网下载最新版本Anaconda3(https://www.continuum.io/downloads),我下载是是带有python3.6的Anaconda3-4.4.0-Linux-x86_64.sh. 2.安装Annconda3 bash Anaconda3-4.4.0-Linux-x86_64.sh   在home/ubuntu出现anaconda3文件夹(注:ubuntu是系统用户名.下同). source ~/.bashrc 3.

PyTorch框架+Python 3面向对象编程学习笔记

一.CNN情感分类中的面向对象部分 sparse.py 1 super(Embedding, self).__init__() 表示需要父类初始化,即要运行父类的_init_(),如果没有这个,则要自定义初始化 1 self.weight = Parameter(torch.Tensor(num_embeddings, embedding_dim)) Parameter跳转 1 class Parameter(Variable): 2 """A kind of Variabl

PyTorch学习问题记录

Q1:def train() 中的model.train()的作用是什么?为什么要写? A1:class torch.nn.Module中 train(mode=True) Sets the module in training mode. This has any effect only on modules such as Dropout or BatchNorm. 参看 http://pytorch.org/docs/master/nn.html Q2:torch.gather() 和 t

基于pytorch实现word2vec

一.介绍 word2vec是Google于2013年推出的开源的获取词向量word2vec的工具包.它包括了一组用于word embedding的模型,这些模型通常都是用浅层(两层)神经网络训练词向量. Word2vec的模型以大规模语料库作为输入,然后生成一个向量空间(通常为几百维).词典中的每个词都对应了向量空间中的一个独一的向量,而且语料库中拥有共同上下文的词映射到向量空间中的距离会更近. word2vec目前普遍使用的是Google2013年发布的C语言版本,现在也有Java.C++.p