BZOJ 3597 SCOI2014 方伯伯送椰子 网络流分析+SPFA

原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3597

Description

四川的方伯伯为了致富,决定引进海南的椰子树。方伯伯的椰子园十分现代化,椰子园中有一套独特的交通系统。

现在用点来表示交通节点,边来表示道路。这样,方伯伯的椰子园就可以看作一个有 n + 2 个交通节点,m条边的有向无环图。n +1 号点为入口,n +2 号点为出口。每条道路都有 6 个参数,ui,vi,ai,bi,ci,di,分别表示,该道路从 ui 号点通向 vi 号点,将它的容量压缩一次要 ai 的花费,容量扩大一次要 bi 的花费,该条道路当前的运输容量上限为 ci,并且每单位运输量通过该道路要 di 的费用。

在这个交通网络中,只有一条道路与起点相连。因为弄坏了这条道路就会导致整个交通网络瘫痪,聪明的方伯伯决定绝不对这条道路进行调整,也就是说,现在除了这条道路之外,对其余道路都可以进行调整。

有两种调整方式:

  1. 选择一条道路,将其进行一次压缩,这条道路的容量会下降 1 单位。
  2. 选择一条道路,将其进行一次扩容,这条道路的容量会上升 1 单位。

一条道路可以被多次调整。

由于很久以前,方伯伯就请过一个工程师,对这个交通网络进行过一次大的优化调整。所以现在所有的道路都被完全的利用起来了,即每条道路的负荷都是满的(每条道路的流量等于其容量)。

但方伯伯一想到自己的海南椰子会大丰收,就十分担心巨大的运输量下,会导致过多的花费。因此,方伯伯决定至少进行一次调整,调整之后,必须要保持每条道路满负荷,且总交通量不会减少。

设调整后的总费用是 Y,调整之前的总费用是 X。现在方伯伯想知道,最优调整比率是多少,即假设他进行了 k 次调整,(X - Y)/k最大能是多少?

注:总费用 = 交通网络的运输花费 + 调整的花费

Input

第一行包含二个整数N,M接下来M行代表M条边,表示这个交通网络每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di接下来一行包含一条边,表示连接起点的边

Output

一个浮点数,保留二位小数。表示答案,数据保证答案大于0

Sample Input

5 10

1 5 13 13 0 412

2 5 30 18 396 148

1 5 33 31 0 39

4 5 22 4 0 786

4 5 13 32 0 561

4 5 3 48 0 460

2 5 32 47 604 258

5 7 44 37 75 164

5 7 34 50 925 441

6 2 26 38 1000 22

Sample Output

103.00

HINT

1<=N<=500,0<=M<=3000,1<=Ui,Vi<=N+2,0<=Ai,Bi<=500,0<=Ci<=10000,0<=Di<=1000

—————————————————————————————————————————

题意概述:
·给出一个N+2个点M条边的DAG图,这是一张网络,每条边有缩容1的代价a,扩容1的代价b,流量上限c,流量费用d。一开始网络中每条边都是满流的。现在可以对网络进行一些调整(不包括和起点相连的唯一的那条边),调整之后使得网络中的所有边依旧满流(即同时流量大小不变)。
·假设进行了K次调整,调整之前的总流量费用为X,调整中花费的费用以及调整之后的流量费用为Y,问(X-Y)/K的最大值(答案保证大于0)。

分析:
·哎呀呀先分析性质。。。。。
·题目给的(X-Y)/K长得很难看。。发现每一次操作只会让某一条边新的流量的代价增加/减少单位代价,所以说这个式子实际上求的是合法调整方案每次操作的单位代价。
·最终的总流量不能变,那么事实上我们不能增流或者减流,只能调整流量。在残量网络之中一个合法的改流对应了一个环(可以递归证明,因为这是个DAG图所以不存在正权环无效改流的情况)。对于一次增流操作,付出的代价为d+b;对于一次减流操作,得到的收益为d-a。当存在一个环中所有边的调整代价为负数,即得到一个负权环的时候,这种调整给我们带来了收益。
·题目的问法显然是个最优比率问题,那么考虑二分答案。假设当前二分到的值为m,假设存在一种方案,所有被操作的边的收益和为sum,操作边的数量为cnt,那么有sum/cnt>=m,虽然这其中可能有很多个环,但是根据糖水原理一定至少包含一个环单独满足这个性质。于是对于这单独的一个环,式子变成:cnt*m-sum<=0,cnt表示的是环上边的数量。分到每条边的头上就是sum{m-w}<=0,其中w代表的是这条边的收益(原图的边正向连边,收益-(d+b),反向连边,收益为(d-a))。对于原图中没有流量的边,不连反向边。二分答案的时候看有没有负权环,有的话说明答案成立,可以往大猜,否则不成立,只能往小猜。
·二分下界为0,上界为所有边d的和。
·最坏时间复杂度:O((34)*N*M)

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cstdlib>
 5 #include<algorithm>
 6 #include<queue>
 7 #include<set>
 8 #include<map>
 9 #include<vector>
10 #include<cctype>
11 #define inf (1e9+5)
12 using namespace std;
13 const int maxn=505;
14 const int maxm=3005;
15 const double eps=1e-4;
16
17 int N,M;
18 struct net_edge{ int u,v,a,b,c,d; }NE[maxm];
19 struct edge{ int to,next; double w; }E[maxm<<1];
20 int first[maxn],np,inq[maxn],inc[maxn],sum; double dist[maxn];
21
22 void data_in()
23 {
24     scanf("%d%d",&N,&M);
25     for(int i=1;i<=M;i++){
26         scanf("%d%d%d%d%d%d",&NE[i].u,&NE[i].v,&NE[i].a,&NE[i].b,&NE[i].c,&NE[i].d);
27         sum+=NE[i].d;
28     }
29 }
30 void add_edge(int u,int v,double w)
31 {
32     E[++np]=(edge){v,first[u],w};
33     first[u]=np;
34 }
35 bool SPFA()
36 {
37     for(int i=1;i<=N+2;i++) dist[i]=inf,inc[i]=inq[i]=0;
38     queue<int>q;
39     q.push(N+1);
40     dist[N+1]=0,inq[N+1]=1,inc[N+1]=1;
41     while(!q.empty()){
42         int i=q.front(); q.pop();
43         inq[i]=0;
44         for(int p=first[i];p;p=E[p].next){
45             int j=E[p].to;
46             if(dist[i]+E[p].w<dist[j]){
47                 dist[j]=dist[i]+E[p].w,inc[j]++;
48                 if(inc[j]==N+2) return 1;
49                 if(!inq[j])    inq[j]=1,q.push(j);
50             }
51         }
52     }
53     return 0;
54 }
55 bool check(double m)
56 {
57     memset(first,0,sizeof(first));
58     np=0;
59     for(int i=1;i<=M;i++){
60         add_edge(NE[i].u,NE[i].v,m+(NE[i].d+NE[i].b));
61         if(NE[i].c) add_edge(NE[i].v,NE[i].u,m-(NE[i].d-NE[i].a));
62     }
63     return SPFA();
64 }
65 void work()
66 {
67     double L=0,R=sum,mid,ans=0;
68     while(R-L>=eps){
69         mid=(L+R)/2;
70         if(check(mid)) ans=mid,L=mid;
71         else R=mid;
72     }
73     printf("%.2f\n",ans);
74 }
75 int main()
76 {
77     data_in();
78     work();
79     return 0;
80 }

原文地址:https://www.cnblogs.com/KKKorange/p/8601144.html

时间: 2024-11-10 14:32:34

BZOJ 3597 SCOI2014 方伯伯送椰子 网络流分析+SPFA的相关文章

bzoj 3597 [Scoi2014] 方伯伯运椰子 - 费用流 - 二分答案

题目传送门 传送门 题目大意 给定一个费用流,每条边有一个初始流量$c_i$和单位流量费用$d_i$,增加一条边的1单位的流量需要花费$b_i$的代价而减少一条边的1单位的流量需要花费$a_i$的代价.要求最小化总费用减少量和调整次数的比值(至少调整一次). 根据基本套路,二分答案,移项,可以得到每条边的贡献. 设第$i$条边的流量变化量为$m_i$,每次变化花费的平均费用为$w_i$.那么有 $\sum c_id_i - \sum (c_i + m_i)d_i + |m_i|(w_i + mi

BZOJ 3595: [Scoi2014]方伯伯的Oj SBT+可持久化Treap

3595: [Scoi2014]方伯伯的OjTime Limit: 6 Sec  Memory Limit: 256 MBSubmit: 102  Solved: 54[Submit][Status] Description 方伯伯正在做他的Oj.现在他在处理Oj上的用户排名问题. Oj上注册了n个用户,编号为1-",一开始他们按照编号排名.方伯伯会按照心情对这些用户做以下四种操作,修改用户的排名和编号: 1.操作格式为1 x y,意味着将编号为z的用户编号改为V,而排名不变,执行完该操作后需要

bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化

3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 314  Solved: 132[Submit][Status] Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐.方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列.方伯伯可以选择一个区间,把这个区间的

BZOJ 3594[Scoi2014]方伯伯的玉米田

题面: 3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1403  Solved: 630[Submit][Status][Discuss] Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐.方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列.方伯伯可

BZOJ3597 [Scoi2014]方伯伯运椰子 【二分 + 判负环】

题目链接 BZOJ3597 题解 orz一眼过去一点思路都没有 既然是流量网络,就要借鉴网络流的思想了 我们先处理一下那个比值,显然是一个分数规划,我们二分一个\(\lambda = \frac{X - Y}{k}\) 如果\(\lambda\)成立,则 \[\lambda \le \frac{X - Y}{k}\] 即 \[\lambda k + (Y - X) \le 0\] 所以我们只需要判断是否存在一种方案使得这个式子成立 依照网络流的思想,撤回流量就往反向边走,扩展流量往正向边 对于边

bzoj 3594 [Scoi2014]方伯伯的玉米田(DP+二维BIT)

[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3594 [题意] 给定一个n个数的序列,有K次将一个区间内的数加1的机会,问最长不下降子序列. [思路] 首先知道每次加1一个区间为[i,n]肯定不会差. 设f[i][j]为前i个数,还有j次机会的LIS,则有转移式: f[i][j] = max{ f[a][b],h[a]+b<=h[i]+j } 则可以用二维BIT加速方程转移. [代码] 1 #include<set> 2

BZOJ 3594 [Scoi2014]方伯伯的玉米田(二维树状数组)

[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3594 [题目大意] 给出一个数列,选出k个区间使得区间内数全部加1, 求k次操作之后最长的不下降子序列 [题解] 我们发现,每次的区间右端点一定贪心选到最右端才是最优的, 那么在用树状数组统计的时候,只要一个点被+1了,那么后面的点起码+1, 我们在树状数组后面加一维统计被区间包含的次数,发现也是前缀和关系, 所以用二维树状数组统计答案即可. 为避免自身被重复统计,第二维循环降序.

BZOJ 3594 Scoi2014 方伯伯的玉米田 树状数组

题目大意:给定一个序列,可以选择k次区间并将区间内每个数都+1,求操作之后LIS的最大值 我的做法不是标解...5E的复杂度为何跑的飞起... 首先一个显而易见的结论就是我们选择的k次区间右端点都是n时才能保证最优 知道这个我们就可以DP了- - 令f[i][j]表示前i个数上升j次的最大LIS 那么有f[i][j]=max{f[k][l]|k<i,l<=j,a[k]+l<=a[i]+j}+1 看到三维偏序就可以用二维树状数组了- - 时间复杂度O(nklog(max(ai)+k)log

BZOJ3597: [Scoi2014]方伯伯运椰子

输入格式: 第1 行包含2 个整数n,m接下来m 行代表m 条边,表示这个交通网络.每行6 个整数,表示ui,vi,ai,bi,ci,di.接下来1 行包含1 条边,表示连接起点的边 输出格式: 一个浮点数,保留2 位小数,表示要求的答案,数据保证答案大于0 样例输入: 6 7 1 2 0 0 1 1000 2 4 0 0 1 1000 4 6 0 0 1 1000 1 3 0 0 0 0 3 5 0 0 0 0 5 6 0 0 0 0 6 8 0 0 1 0 7 1 0 0 1 0 样例输出: