费马小定理的证明

数论:

1.费马小定理:

mod:a mod p就是a除以p的余数

费马小定理:a^(p-1)≡1(mod p)

前提:p为质数,且a,p互质

互质:a和p相同的因数为1.

先来看一下≡是什么:

a≡b(mod p) <=> a mod p=b mod p

注释:<=> 两边相等

在证明之前,先给出引理:

(1)如果p,c互质,并且a*c≡b*c(mod p)

证明过程:

∵a*c mod p = b*c mod p

∴(a*c - b*c) mod p = 0

∴(a-b)*c mod p=0;

∴(a-b)*c 是p的倍数

∵p,c互质

∴k*p*c mod p = 0

∴(a-b)=k*p//这里建议你用笔推一下

∴(a-b)%p=0

(2) 若a1,a2,a3,a4,am为mod m的完全剩余系,m,b互质,那么

b*a1,b*a2,b*a3,b*a4......b*am也是mod m的完全剩余系。

完全剩余系:从模n的每个剩余类中各取一个数,得到一个由n个数组成的集合,叫做模n的一个完全剩余系。

证明过程:

利用反证法:

假设存在一个b*ai≡b*aj(mod p),由引理(1)可证ai≡aj(mod p)

所以这个假设不成立。所以引理(2)成立。

开始费马小定理的证明:

0,1,2,3,4...p-1是p的完全剩余系

∵a,p互质

∴a,2*a,3*a,4*a.......(p-1)*a也是mod p的完全剩余系

∴1*2*3.........*(p-1)*a≡a*2*a*3*a......(p-1)*a  (mod p)

∴ (p-1)! ≡ (p-1)!*a^(p-1) (mod p)

两边同时约去(p-1)!

a^(p-1)≡1(mod p)

原文地址:https://www.cnblogs.com/tpgzy/p/9014936.html

时间: 2024-10-01 10:22:18

费马小定理的证明的相关文章

费马小定理的证明:

证明:假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p)一:准备知识:引理1.剩余系定理2 若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(modm)时,有a≡b(modm) 证明:ac≡bc(mod m)可得ac–bc≡0(mod m)可得(a-b)c≡0(mod m)因为(m,c)=1即m,c互质,c可以约去,a–b≡0(mod m)可得a≡b(mod m) 引理2.剩余系定理5 若m为整数且m>1,a[1],a[2],a[3],a[4],…a

HDU - 1098 - Ignatius&#39;s puzzle (数论 - 费马小定理)

Ignatius's puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 7012    Accepted Submission(s): 4847 Problem Description Ignatius is poor at math,he falls across a puzzle problem,so he has no

费马小定理证明

  费马小定理证明 费马小定理定义:假如p是质数,且gcd(a,p)=1,那么a^(p-1)≡1(mod p),就是说,如果p是质数,并且a与p互质,那么a的p-1次方膜上p恒等于1.下面给出证明: 例如:13是一个质数,那么1,2,3,4,5,6,7,8,9,10,11,12乘上一个与13互质的数,比如乘上3,得到3,6,9,12,15,18,21,24,27,30,33,36,   然后膜上13得到3,6,9,12,2,5,8,11,1,4,7,10,给这些数排序就会发现,他们就是1,2,3

欧拉定理 / 费马小定理证明

主要部分转自百度百科:https://baike.baidu.com/item/欧拉定理 内容: 在数论中,欧拉定理,(也称费马-欧拉定理)是一个关于同余的性质.欧拉定理表明,若n,a为正整数,且n,a互质,则: 证明: 将1~n中与n互质的数按顺序排布:x1,x2……xφ(n) (显然,共有φ(n)个数) 我们考虑这么一些数: m1=a*x1;m2=a*x2;m3=a*x3……mφ(n)=a*xφ(n) (1) 这些数中的任意两个都不模n同余,因为如果有mS≡mR (mod n) (这里假定m

hdu1098费马小定理

Ignatius's puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 9783    Accepted Submission(s): 6839 Problem Description Ignatius is poor at math,he falls across a puzzle problem,so he has no

hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速幂来解,不用说肯定wa,看题目的通过率也不高,我想会不会有啥坑啊.然而我就是那大坑,哈哈. 不说了,直接说题吧,先讨论k=1,2,3;时的解.这应该会解吧,不多说了: 从第四项开始f(4)=a^1+b^2;f(5)=a^2+b^3;f(6)=a^3+b^5......; 看出来了吧,a上的指数成斐波

hdoj 1089(费马小定理)

题目大意:方程f(x)=5*x^13+13*x^5+k*a*x:输入任意一个数k,是否存在一个数a,对任意x都能使得f(x)能被65整出. 现假设存在这个数a ,因为对于任意x方程都成立 所以,当x=1时f(x)=18+ka 又因为f(x)能被65整出,故设n为整数 可得,f(x)=n*65; 即:18+ka=n*65; 因为n为整数,若要方程成立 则问题转化为, 对于给定范围的a只需要验证, 是否存在一个a使得(18+k*a)%65==0 所以容易解得 注意,这里有童鞋不理解为毛a只需到65即

数论初步(费马小定理) - Happy 2004

Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29). Take X = 1 for an example. The positive integer divisors of 2004^1

CodeForces 300C Beautiful Numbers(乘法逆元/费马小定理+组合数公式+快速幂)

C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Vitaly is a very weird man. He's got two favorite digits a and b. Vitaly calls a positive integer good, if the decimal