斯坦福-随机图模型-week2.2_



title: 斯坦福-随机图模型-week2.2

tags: note

notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation

---

斯坦福-随机图模型-week2.2

习题

1。第 1 个问题

Markov Assumption.

If a dynamic system X satisfies the Markov assumption for all time t≥0, which of the following statements must be true? You may select 1 or more options.

(X(t+1)⊥X(0:(t?1))|X(t))

正确 

(X(t+1)⊥X(0:(t?1)))

未选择的是正确的 

P(X(t+1))=P(X(t?1)) for all possible values of X

未选择的是正确的 

第 2 个问题

正确

1 / 1 分

2。第 2 个问题

Independencies in DBNs.

In the following DBN, which of the following independence assumptions are true? You may select 1 or more options.

(O(t)⊥O(t?1))

未选择的是正确的 

(O(t)⊥X(t?1)∣X(t))

正确 

When X(t) is known, there is no active trail from O(t) to any other node in the network.

(X(t+1)⊥X(t)∣X(t?1))

未选择的是正确的 

(X(t)⊥X(t?1))

未选择的是正确的 

第 3 个问题

正确

1 / 1 分

3。第 3 个问题

Applications of DBNs.

For which of the following applications might one use a DBN (i.e. the Markov assumption is satisfied)? You may select 1 or more options.

Modeling data taken at different locations along a road, where the data at each location is influenced by only the data at the same location and at the location directly to the East

正确 

Consider each location to be a time slice, and order the locations from East to West. Viewed in this way, this data satisfies the Markov assumption.

Modeling time-series data, where the events at each time-point are influenced by only the events at the one time-point directly before it

正确
This perfectly satisfies the Markov assumption.

Predicting the probability that today will be a snow day (school will be closed because of the snow), when this probability depends only on whether yesterday was a snow day.

正确 

Let each day be a time slice, and order the days in chronological order. Viewed in this way, this data satisfies the Markov assumption.

Modeling the behavior of people, where a person‘s behavior is influenced by only the behavior of people in the same generation and the people in his/her parents‘ generation.

正确
Consider each generation to be a time-slice, and this data satisifes the Markov assumption.

第 4 个问题

正确

1 / 1 分

4。第 4 个问题

Plate Semantics.

"Let A and B be random variables inside a common plate indexed by i. Which of the following statements must be true? You may select 1 or more options.

For each i, A(i) and B(i) are not independent.

未选择的是正确的 

For each i, A(i) and B(i) are independent.

未选择的是正确的 

There is an instance of A and an instance of B for every i.

正确 

For each i, A(i) and B(i) have edges connecting them to the same variables outside of the plate.

未选择的是正确的 

第 5 个问题

错误

0 / 1 分

5。第 5 个问题

*Plate Interpretation.

Consider the plate model below (with edges removed). Which of the following might a given instance of X possibly represent in the grounded model? (You may select 1 or more options. Keep in mind that this question addresses the variable‘s semantics, not its CPD.)

Whether a specific teacher T is a tough grader

This model does not have any information about how hard of a grader the teacher is, but it does have information about classes and schools.

Whether someone with expertise E taught something of difficulty D at school S

未选择的是正确的 

Whether a teacher with expertise E taught a course of difficulty D

未选择的是正确的 

Whether a specific teacher T taught a specific course C at school S

这应该被选择 

None of these options can represent X in the grounded model

未选择的是正确的 

第 6 个问题

错误

0 / 1 分

6。第 6 个问题

Grounded Plates.

Using the same plate model, now assume that there are s schools, t teachers in each school, and c courses taught by each teacher. How many instances of the Expertise variable are there?

ct

st

Not enough information given to know

这个选项的答案不正确 

st

第 7 个问题

正确

1 / 1 分

7。第 7 个问题

Template Models. Consider the plate model shown below. Assume we are given K Markets, L Products, M Consumers and N Locations. What is the total number of instances of the variable P in the grounded BN?

K?L?M

正确
There will be one grounded instance of P for each combination of Market, Consumer, and Product. There will be K?L?M of these combinations.

K?L?M?N

(L?M)K

K?(N+(L?M))

第 8 个问题

正确

1 / 1 分

8。第 8 个问题

Template Models. Consider the plate model from the previous question. What might P represent?

Whether a specific product PROD was consumed by consumer C in market M

正确
In the grounded model, there will be an instance of P for each combination of Product and Consumer, and there is a combination like this for each Market. Thus, we are looking at a random variable that will say something about a specific product, market, and consumer combination. The correct answer is the only one that does this.

Whether a specific product PROD was consumed by consumer C in all markets

Whether a specific product of brand q was consumed by a consumer with age t in a market of type m that is in location a

Whether a specific product PROD was consumed by consumer C in market M in location L

第 9 个问题

正确

1 / 1 分

9。第 9 个问题

Time-Series Graphs. Which of the time-series graphs satisfies the Markov assumption? You may select 1 or more options.

(a)

未选择的是正确的 

(b)

正确
(b) is a time-series graph in which all variables in each time slice are independent of all variables in time slices at least 2 time slices before, given all variables in the previous time slice (X(t+1),Y(t+1),Z(t+1)⊥X(t?1),Y(t?1),Z(t?1)|X(t),Y(t),Z(t)).

(c)

未选择的是正确的 

第 10 个问题

正确

1 / 1 分

10。第 10 个问题

*Unrolling DBNs. Below are 2-TBNs that could be unrolled into DBNs. Consider these unrolled DBNs (note that there are no edges within the first time-point). In which of them will (X(t)⊥Z(t)∣Y(t)) hold for all t, assuming Obs(t) is observed for all t and X(t) and Z(t) are never observed? You may select 1 or more options.

Hint: Unroll these 2-TBNs into DBNs that are at least 3 time steps long (i.e., involving variables from t?1,t,t+1).

(a)

未选择的是正确的 

(b)

正确
The independence assumption holds in this network because knowing Y(t) blocks what was the only active trail from X(t) to Z(t).

(c)

未选择的是正确的 

原文地址:https://www.cnblogs.com/zangzelin/p/8547480.html

时间: 2024-10-15 03:39:58

斯坦福-随机图模型-week2.2_的相关文章

斯坦福-随机图模型-week2.1_

title: 斯坦福-随机图模型-week2.1 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.1 plate model 模板模型 4. Plate 模型 时序模板模型,通常还有一类情况需要模板模型:问题中有多个相同类型的不同对象,希望建立模板对这些对象进行统一考虑. 4.1 硬币采样例子 如何理解 Plate 模型的机制,以最简单的硬币采样

斯坦福-随机图模型-week1.0_

title: 斯坦福-随机图模型-week2.0 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.0 模板模型(Template Models) 在实际的模型的建立的过程中,会出现很多的重复的情况.比如在如下的模型中: 有很多的重复的结构,比如每一个的基因型都和表现形直接相关.而且每一个基因型都和两个前代的基因型十分的相关. 或者在自然语言处理的

斯坦福-随机图模型-week1.1_

title: 斯坦福-随机图模型-week1.1 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week1.1 练习 1.第 1 个问题 Factor product. Let X,Y and Z be binary variables. If ?1(X,Y) and ?2(Y,Z) are the factors shown below, compute

斯坦福-随机图模型-week1.5

title: 斯坦福-随机图模型-week1.5 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week1.5 贝叶斯网络 朴素贝叶斯 朴素贝叶斯是一个概率的分类模型,下面我们用概率图的思想去理解他.他转化成概率图模型可以描述成如下: 原文地址:https://www.cnblogs.com/zangzelin/p/8502825.html

斯坦福-随机图模型-week1.5_

title: 斯坦福-随机图模型-week1.5 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week1.5 贝叶斯网络 朴素贝叶斯 朴素贝叶斯是一个概率的分类模型,下面我们用概率图的思想去理解他.他转化成概率图模型可以描述成如下: 第一层是一个分类的随机变量,描述事物的分类: 第二层是多个特征的随机变量,也就是说这是一个从分类到特征的概率图模型,我们有

斯坦福-随机图模型-week1.4_

title: 斯坦福-随机图模型-week1.4 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week1.4 独立性 preliminaries 初步 独立的数学描述 对于事建 a, b 如果是独立的那么使用如下的符号进行描述 独立的事件有以下的性质: 对于随机变量有相似的表示 一个例子 还是用之前的成绩问题作为例子: 我们可以看到P(I,D)的矩阵中,

斯坦福-随机图模型-week3.0_

title: 斯坦福-随机图模型-week3.0 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.0 马尔科夫网络 pairwise markov networks 成对马尔科夫模型 图论模型中有有向图和无向图,对于无向图来说,运用到随机图论中就是马尔科夫模型. 在马尔科夫模型中,有一种模型十分有趣,他是成对马尔科夫模型. 我们首先看一个例子:

斯坦福-随机图模型-week3.3_

title: 斯坦福-随机图模型-week3.3 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.3 习题 1. Question 1 I-Maps. Graph G (shown below) is a perfect I-map for distribution P, i.e. I(G)=I(P). Which of the other gr

python图工具中基于随机块模型动态网络社团检测

原文链接:http://tecdat.cn/?p=7602 这是“政治博客圈和2004年美国大选”中的政治博客网络图,但是边缘束是使用随机块模型确定的(注:下图与图相同(即,布局和数据相同)). Tiago论文中的5-我只是在上面放了一个黑色背景 . 边缘配色方案与Adamic和Glance的原始论文中的相同,即每个节点对应一个博客URL,颜色反映政治取向,红色代表保守派,蓝色代表自由派.橙色边从自由派博客到保守派博客,紫色边从保守派到自由派(参见Adamic和Glance中的图1). 颜色方案