浅谈高斯消元的实现和简单应用

一、高斯消元的原理

对于n元的m个线性方程组成的方程组,我们将其以矩阵的形式记录下来:

a11 a12 a13 ...... a1n b1
a21 a22 a23 ...... a2n b2
...
...
...
an1 an2 an3 ...... ann bn

然后进行初等行列变换,尝试构造出一个上三角矩阵,逐步使系数不为零的项减少;

等最后只剩下一个系数不为零时,进行回代,逐步求出已知解。(详解过程咨询小学老师)

二、高斯消元的实现

老老实实的回代代码参见其他人的博客,这里介绍一种比较毒瘤的不回代暴力消元法:

1.Process

对于每个方程,按照一定的规则(后话)挑选一个主元,记录该主元对应第几个方程,然后用初等行列变换消去其他所有该元的系数;

最后我们得到的是一个每行只有一个数不为零,每列只有一个数不为零的鬼畜矩阵(自己脑补)

此时令ans向量对应的数字出去该行的非零系数,即为对应该元的解。

2.Code

设a数组为已经记录系数的数组(格式见上方),那么a应该是n行n+1列的,最后一列代表方程的常数项;

设w数组记录每个方程的主元是第几项,v数组记录答案;

当多解时输出“Multiple solutions”,无解时输出”No solution”;


double a[max_n][max_n+1],v[max_n];

int w[max_n]; 

void gauss(){
    double eps=1e-6;
    for(int i=1;i<=n;++i){    //Enumerate the equation;
        int p=0;                //Record the position of the largest number;
        double mx=0;        //Recording the largest number;
        for(int j=1;j<=n;++j)
            if(fabs(a[i][j])-eps>mx){
                mx=fabs(a[i][j]);p=j;    //fabs() returns the absolute value of float;
            }
        if(!p){
            if(fabs(a[i][n+1]<eps))printf("Multiple solutions");
            else printf("No solution");
            return;
        }
        w[i]=p;
        for(int j=1;j<=n;++j)
            if(i!=j){       //other equations
                double t=a[j][p]/a[i][p];
                for(int k=1;k<=n+1;++k)    //n+1 is important
                    a[j][k]-=a[i][k]*t;
            }
    }
    for(int i=1;i<=n;++i) v[w[i]]=a[i][n+1]/a[i][w[i]];
} 

3.notice

(1)精度的设置

众所周知浮点数是有精度丢失的,在高斯消元中,精度的选择要依题目而定,精度过低会导致系数较小的数被误认为系数为零,而精度过高也有可能会导致误差大于精度,导致本应该系数消为0的项误认为系数不为零,所以精度的选择是很哲学的问题,要注意。

推荐范围:1e-4到1e-10

(2)主元的选取原则

接着(1)说,我们知道,用浮点数是有精度丢失的,那么让一个较大的数除以一个极小的数误差自然大的可想而知,所以我们想得到在精度允许的条件下系数最大的主元,所以对于每个方程,我们都应该选择最大系数的元作为主元。

(3)在模2意义下的高斯消元

使用bitset优化运行时间,详见相关应用中第三个例题的讲解;

三、相关应用

这里给出高斯消元的几道基础题目,难度适合初学者。

1.[Luogu P3389]【模板】高斯消元

Description

给定一个线性方程组,对其求解

输入格式:
第一行,一个正整数 n
第二至 n+1行,每行 n+1个整数,为 a1,a2?an和 b,代表一组方程。

输出格式:
共n行,每行一个数,第 i行为 xi(保留2位小数)
如果不存在唯一解,在第一行输出"No Solution".

Solution

如上所述。

Code

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;

const int max_n=110;
double a[max_n][max_n+1],v[max_n];
int n,w[max_n]; 

inline int rd(){
    int x=0;
    bool f=0;
    char c=getchar();
    while(!isdigit(c)){
        if(c=='-') f=1;
        c=getchar();
    }
    while(isdigit(c)){
        x=(x<<1)+(x<<3)+(c^48);
        c=getchar();
    }
    return f?-x:x;
}

void gauss(){
    double eps=1e-6;
    for(int i=1;i<=n;++i){//enumerate the equation;
        int p=0;          //Record the position of the largest number;
        double mx=0;      //Recording the largest number;
        for(int j=1;j<=n;++j)
            if(fabs(a[i][j])-eps>mx){
                mx=fabs(a[i][j]);p=j;//fabs() returns the absolute value of float;
            }
        if(!p){
            printf("No Solution");
            return;
        }
        w[i]=p;
        for(int j=1;j<=n;++j)
            if(i!=j){       //other equations
                double t=a[j][p]/a[i][p];
                for(int k=1;k<=n+1;++k)//n+1 is important
                    a[j][k]-=a[i][k]*t;
            }
    }
    for(int i=1;i<=n;++i) v[w[i]]=a[i][n+1]/a[i][w[i]];
    for(int i=1;i<=n;++i) printf("%.2lf\n",v[i]);
}

int main(){
    n=rd();
    for(int i=1;i<=n;++i)
        for(int j=1;j<=n+1;++j)
            a[i][j]=rd();
    gauss();
    return 0;
}

原文地址:https://www.cnblogs.com/COLIN-LIGHTNING/p/8981923.html

时间: 2024-10-06 00:16:53

浅谈高斯消元的实现和简单应用的相关文章

浅谈高斯消元

高斯消元 一.简介 高斯消元法,我们在线性代数里面的是学过的,它的主要用途是求解n元一次线性方程组. 举个例子,下面这个就是一个4元一次方程组 我们可以把它化成一个大小为4*5的矩阵 在求解之前,我们首先要了解一下几个线性方程组的基本性质 矩阵中任意两行交换位置,解不变. 同一行乘上同一个数,解不变. 同一行乘上同一个数再加上另一个方程,解不变 接下来,我们来讲解下具体过程,我们的目的就是完成消元后,对于左边的系数矩阵,每一行都有且只有一个数不为0.具体方法就是用上面的运用上面的原理.具体步骤如

高斯消元 初见

今天,跟着HYM大神学习了高斯消元,思想很简单,不过用处很大,也有一些细节. 其实就是消元的思想,对n个方程不断消元,在解出一个未知数之后,回带求出其他未知数.如果回带时,我们发现方程左面为0,右面不为0,则无解:若左面为0,右面为0,则多解. cogs1845||bzoj1013 球星空间生成器sphere 题目大意:给出n维空间内一个球上的n+1个点,求圆心坐标. 思路:比较裸的高斯消元,唯一就是自己建方程.设圆心坐标(a,b,c,d,...),我们发现,球上各点到圆心距离相等,于是就有连等

poj_1222_高斯消元

第一次学习使用高斯消元,将灯板化为线性方程组,进行求解. /*######################################################################### # File Name: poj_1222.cpp # Author: CaoLei # Created Time: 2015/7/20 15:48:04 ###################################################################

HDU 4870 Rating(高斯消元)

HDU 4870 Rating 题目链接 题意:一个人注册两个账号,初始rating都是0,他每次拿低分的那个号去打比赛,赢了加50分,输了扣100分,胜率为p,他会打到直到一个号有1000分为止,问比赛场次的期望 思路:f(i, j)表示i >= j,第一个号i分,第二个号j分时候,达到目标的期望,那么可以列出转移为f(i, j) = p f(i', j') + (1 - p) f(i'' + j'') + 1 f(i', j')对应的是赢了加分的状态,f(i'', j'')对应输的扣分的状态

【BZOJ 4171】 4171: Rhl的游戏 (高斯消元)

4171: Rhl的游戏 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 74  Solved: 33[Submit][Status][Discuss] Description RHL最近迷上一个小游戏:Flip it.游戏的规则很简单,在一个N*M的格子上,有一些格子是黑色,有一些是白色 .每选择一个格子按一次,格子以及周围边相邻的格子都会翻转颜色(边相邻指至少与该格子有一条公共边的格子 ),黑变白,白变黑.RHL希望把所有格子都变成白色的.不幸

POJ 1830 开关问题 高斯消元,自由变量个数

http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被操作一次,记得a[i][i] = 1是必须的,因为开关i操作一次,本身肯定会变化一次. 所以有n个开关,就有n条方程, 每个开关的操作次数总和是:a[i][1] + a[i][2] + ... + a[i][n] 那么sum % 2就代表它的状态,需要和(en[i] - be[i] + 2) % 2

BZOJ 3105: [cqoi2013]新Nim游戏 [高斯消元XOR 线性基]

以后我也要用传送门! 题意:一些数,选择一个权值最大的异或和不为0的集合 终于有点明白线性基是什么了...等会再整理 求一个权值最大的线性无关子集 线性无关子集满足拟阵的性质,贪心选择权值最大的,用高斯消元判断是否和已选择的线性相关 每一位记录pivot[i]为i用到的行 枚举要加入的数字的每一个二进制为1的位,如果有pivot[i]那么就异或一下(消元),否则pivot[i]=这个数并退出 如果最后异或成0了就说明线性相关... #include <iostream> #include &l

[bzoj1013][JSOI2008]球形空间产生器sphere-题解[高斯消元]

Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数n(1<=N=10).接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点后6位,且其绝对值都不超过20000. Output 有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开.每个实数精确到

[spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

In some countries building highways takes a lot of time... Maybe that's because there are many possiblities to construct a network of highways and engineers can't make up their minds which one to choose. Suppose we have a list of cities that can be c