数据结构之最短路径(1) [迪杰斯特拉算法]

迪杰斯特拉算法介绍:

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。 
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

基本思想:

通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;

接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 ... 重复该操作,

直到遍历完所有顶点。

操作步骤:

(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。

(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。

(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

(4) 重复步骤(2)和(3),直到遍历完所有顶点。

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

迪杰斯特拉算法图解

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!

第1步:将顶点D加入到S中。 
此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。 
上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。 
此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。 
上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。 
此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

第4步:将顶点F加入到S中。 
此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。 
此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。 
此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。 
此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。

代码如下:

 1 #include "stdafx.h"
 2 #include<iostream>
 3 #include<string>
 4 #define MAX_VERTEX_NUM 100
 5 #define INFINITY 65535
 6 typedef int Pathmatirx[MAX_VERTEX_NUM];//存放最短路径下标的数组
 7 typedef int ShortPathTable[MAX_VERTEX_NUM];//存放到各顶点最短路径的权值之和
 8 using namespace std;
 9 typedef struct Graph            //有向图的邻接矩阵
10 {
11     char vexs[MAX_VERTEX_NUM];  //存放顶点的数组
12     int arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM];//定义一个临界矩阵
13     int vexnum, arcnum;         //总顶点数、总边数
14 }Graph;
15
16 int LocateVex(Graph G, char ch) //搜索
17 {
18     for (int i = 0; i < G.vexnum; i++)
19         if (G.vexs[i] == ch)
20             return i;
21     return -1;
22 }
23
24 void CreateGraph(Graph &G)      //创建无向图
25 {
26     char c1, c2;                //弧尾、弧头
27     int i, j, weight;           //weight为权重
28     cout << "请输入总顶点数、总边数(空格隔开):";
29     cin >> G.vexnum >> G.arcnum;
30     cout << "请输入顶点信息(空格隔开):" << endl;
31     for (i = 0; i < G.vexnum; i++)
32     {
33         cin >> G.vexs[i];
34     }
35     for (i = 0; i < G.vexnum; i++)
36         for (j = 0; j < G.vexnum; j++)
37             G.arcs[i][j] = INFINITY;
38     cout << "请输入弧尾、弧头以及权值:" << endl;
39     for (int k = 0; k < G.arcnum; k++)
40     {
41                  cin >> c1 >> c2 >> weight;
42                  i = LocateVex(G, c1);
43                  j = LocateVex(G, c2);
44                  G.arcs[i][j] = weight;
45      }
46 }
47
48 void ShortestPath_Dijkstra(Graph G, int v0, int prev[], int dist[])//迪杰斯特拉算法
49 {    //求有向图G的v0顶点到其余顶点v最短路径prev[v]及带权长度dist[v],prev[v]的值为前驱顶点下标,dist[v]表示v0到v的最短路径长度之和。
50     int v , w, k, min;
51     int final[MAX_VERTEX_NUM];  //final[w]=1表示求得顶点v0至v(w)的最短路径
52     for (v = 0; v < G.vexnum; v++)//初始化数据
53     {
54         final[v] = 0;           //全部顶点初始化为未知最短路径状态
55         dist[v] = G.arcs[v0][v];//将与v0点有连线的顶点加上权值
56         prev[v] = 0;            //初始化路径数组prev为0
57     }
58     dist[v0] = 0;               //v0至v0的路径为0
59     final[v0] = 1;              //v0至v0不需要求路径
60     for (v = 1; v < G.vexnum; v++)//开始主循环,每次求得v0到某个v顶点的最短路径
61     {
62         min = INFINITY;        //当前所知离v0顶点最近的距离
63         for (w = 0; w < G.vexnum; w++)//寻找v0最近的顶点
64         {
65             if (!final[w] && dist[w] < min)
66             {
67                 k = w;
68                 min = dist[w];  //w顶点离v0顶点最近
69             }
70         }
71         final[k] = 1;           //将目前找到的最近的顶点值为1
72         for (w = 0; w < G.vexnum; w++)//修正当前最短路径及距离
73         {      //如果经过v顶点的路径比现在这条路径的长度短的话
74             if (!final[w] && (min + G.arcs[k][w] < dist[w]))
75             {   //说明找到了了更短的路径,修改dist[w]和prev[w]
76                 dist[w] = min + G.arcs[k][w];//修改路径长度
77                 prev[w] = k;
78             }
79         }
80     }
81     cout << "起始点:";          //一下就是输出函数
82     cout << G.vexs[v0]<<endl;
83     cout << "从开始点" << G.vexs[v0] << "到各点的最短距离为:" << endl;
84     for (int i = 0; i < G.vexnum; i++)
85         cout << "到" << G.vexs[i] << "的距离为:" << dist[i] << endl;
86 }
87
88 int main()
89 {
90     Graph G;
91     int prev[MAX_VERTEX_NUM];
92     int dist[MAX_VERTEX_NUM];
93     int v0;
94     CreateGraph(G);
95     cout << "Please input v0:";
96     cin >> v0;
97     ShortestPath_Dijkstra(G, v0, prev, dist);
98 }

示例展示:

参考资料:http://www.cnblogs.com/skywang12345/p/3711512.html

原文地址:https://www.cnblogs.com/Trojan00/p/9005976.html

时间: 2024-08-19 03:47:21

数据结构之最短路径(1) [迪杰斯特拉算法]的相关文章

数据结构之单源最短路径(迪杰斯特拉算法)-(九)

最开始接触最短路径是在数据结构中图的那个章节中.运用到实际中就是我在大三参加的一次美赛中,解决中国的水资源问题.所谓单源最短路径,就是一个起点到图中其他节点的最短路径,这是一个贪心算法. 迪杰斯特拉算法原理(百科): 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增的次序加入到S中,保证: (1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度 (2)每个顶

最短路径之迪杰斯特拉算法(Dijkstra)

1.迪杰斯特拉(dijkstra)算法简介 Dijkstra算法是由E.W.Dijkstra于1959年提出,又叫迪杰斯特拉算法,它应用了贪心算法模式, 是目前公认的最好的求解最短路径的方法.算法解决的是有向图中单个源点到其他顶点的最短 路径问题,其主要特点是每次迭代时选择的下一个顶点是标记点之外距离源点最近的顶点.但 由于dijkstra算法主要计算从源点到其他所有点的最短路径,所以算法的效率较低. 2.dijkstra算法基本过程 假设路网中每一个节点都有标号 是从出发点s到点t的最短路径长

最短路径(迪杰斯特拉算法)

假定条件和上一篇相同... 其实算法思路和上一篇也相同,均为贪心算法... /* * author: buer * github: buer0.github.com */ #include <stdio.h> #include <stdlib.h> #define MAXSIZE 10 typedef struct Graph { int table[MAXSIZE][MAXSIZE]; int num; }Graph; void createTable(Graph *graph)

43. 蛤蟆的数据结构笔记之四十三最短路径之迪杰斯特拉(Dijkstra )算法

43. 蛤蟆的数据结构笔记之四十三最短路径之迪杰斯特拉(Dijkstra )算法 本篇名言:"辛勤的蜜蜂永没有时间悲哀.--布莱克" 这次来看下Dijkstra )算法.还是老方法,先原理,后实现.代码来自网络. 欢迎转载,转载请标明出处:http://blog.csdn.net/notbaron/article/details/47046031 1.  最短路径 最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点之间的最短路径. 管道铺设.线路安排

[从今天开始修炼数据结构]图的最短路径 —— 迪杰斯特拉算法和弗洛伊德算法的详解与Java实现

在网图和非网图中,最短路径的含义不同.非网图中边上没有权值,所谓的最短路径,其实就是两顶点之间经过的边数最少的路径:而对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,我们称路径上第一个顶点是源点,最后一个顶点是终点. 我们讲解两种求最短路径的算法.第一种,从某个源点到其余各顶点的最短路径问题. 1,迪杰斯特拉(Dijkstra)算法 迪杰斯特拉算法是一个按路径长度递增的次序产生最短路径的算法,每次找到一个距离V0最短的点,不断将这个点的邻接点加入判断,更新新加入的点到V0的距

最短路径算法——迪杰斯特拉算法(Dijkstra)

图结构中应用的最多的就是最短路径的查找了,关于最短路径查找的算法主要有两种:迪杰斯特拉算法(Dijkstra)和Floyd算法. 其中迪杰斯特拉算法(Dijkstra)实现如下: 原理就是不断寻找当前的最优解: void main() { int V[Max][Max]={0,8,32,Infinity,Infinity, 12,0,16,15,Infinity, Infinity,29,0,Infinity,13, Infinity,21,Infinity,0,7, Infinity,Infi

最短路径之迪杰斯特拉(Dijkstra)算法

对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,并且我们称路径上的第一个顶点为源点,最后一个顶点为终点.最短路径的算法主要有迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd)算法.本文先来讲第一种,从某个源点到其余各顶点的最短路径问题. 这是一个按路径长度递增的次序产生最短路径的算法,它的大致思路是这样的. 初始时,S中仅含有源.设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度.D

图(最短路径算法————迪杰斯特拉算法和弗洛伊德算法).RP

文转:http://blog.csdn.net/zxq2574043697/article/details/9451887 一: 最短路径算法 1. 迪杰斯特拉算法 2. 弗洛伊德算法 二: 1. 迪杰斯特拉算法 求从源点到其余各点的最短路径 依最短路径的长度递增的次序求得各条路径 路径长度最短的最短路径的特点: 在这条路径上,必定只含一条弧,并且这条弧的权值最小. 下一条路径长度次短的最短路径的特点: 它只可能有两种情况:或是直接从源点到该点(只含一条弧):或者是从源点经过顶点v1,再到达该顶

数据结构图之三(最短路径--迪杰斯特拉算法——转载自i=i++

数据结构图之三(最短路径--迪杰斯特拉算法) [1]最短路径 最短路径?别乱想哈,其实就是字面意思,一个带边值的图中从某一个顶点到另外一个顶点的最短路径. 官方定义:对于内网图而言,最短路径是指两顶点之间经过的边上权值之和最小的路径. 并且我们称路径上的第一个顶点为源点,最后一个顶点为终点. 由于非内网图没有边上的权值,所谓的最短路径其实是指两顶点之间经过的边数最少的路径. 别废话了!整点实际的哈,你能很快计算出下图中由源点V0到终点V8的最短路径吗? [2]迪杰斯特拉算法 迪杰斯特拉算法是按路