HDU 4405 (概率DP)

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4405

题目大意:飞行棋。如果格子不是飞行点,扔骰子前进。否则直接飞到目标点。每个格子是唯一的飞行起点,但不是唯一的飞行终点。问到达或越过终点的扔骰子期望数。

解题思路

一个告诉你求期望应该逆推而不是正推的题。

如果正推的话,对于一个点i,如果是飞行终点,那么势必要枚举到达它的飞行起点,起点有多个,每个起点概率不一定相等,期望怎么求?

如果逆推(终点变成起点)的话,对于一个点i,如果是飞行起点,那么枚举飞行终点时,可以确保终点只会出现一次,(点被逆转过来了)

即dp[v]=dp[i] (v是i的终点),即v点不用扔骰子,期望等于i点的期望,最重要的是v只会出现一次。

由于只要是飞行点或是起点(起点期望=0)就不用扔骰子,所以枚举v点时,要提前标记一下,这样推到这个点就不用扔骰子了。

如果是普通点,则枚举加上i+1~i+6这6个等概率的点的期望/6,再扔一次骰子期望+1。

最后ans=dp[0]。

#include "cstdio"
#include "vector"
#include "cstring"
using namespace std;
vector<int> air[100005];
double dp[100005];
bool vis[100005];
int main()
{
    //freopen("in.txt","r",stdin);
    int n,m,u,v;
    while(scanf("%d%d",&n,&m)!=EOF&&n)
    {
        memset(dp,0,sizeof(dp));
        memset(vis,false,sizeof(vis));
        for(int i=0;i<=n;i++) air[i].clear();
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d",&u,&v);
            air[v].push_back(u);
        }
        for(int i=n;i>=0;i--)
        {
            if(!vis[i]&&i!=n)
            {
                for(int j=i+1;j<=i+6;j++) dp[i]+=dp[j]/6;
                dp[i]+=1;
            }
            for(int j=0;j<air[i].size();j++)
            {
                int to=air[i][j];
                dp[to]=dp[i];
                vis[to]=true;
            }
        }
        printf("%.4lf\n",dp[0]);
    }
}
12186624 2014-11-14 21:25:00 Accepted 4405 15MS 2720K 920 B C++ Physcal
时间: 2024-12-25 15:51:38

HDU 4405 (概率DP)的相关文章

hdu 4405 概率dp 2012年金华亚洲网络赛--虽然水,但是是自己独立做的第一道概率dp

题目:http://acm.hdu.edu.cn/showproblem.php?pid=4405 e[i]:当前在位置i还需要走的步数期望 受刘汝佳的AC自动机那个后缀链接写法的启发,我的x[i]通过逆序算出来连续有"flight line "的时候,能到达的最远距离, rep(i,0,m) { scanf("%d%d",&xx,&yy); x[xx]=yy; } for(int i=n;i>=0;i--) if(x[i]!=-1 &

hdu 4405 概率dp求期望

题意是给你n+1个点 标号是0-n   现在按投掷色子的方式走   求走到n点以后的次数的期望, dp[i]表示从i到终点的期望      开始dp[n]=0,然后从后网前求 如果该点不能飞则dp[i]=∑dp[i+k]*1/6+1:  最后输出dp[0]即可:  否则dp[i]=dp[map[i]]: #include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> us

hdu 3853 概率DP 简单

http://acm.hdu.edu.cn/showproblem.php?pid=3853 题意:有R*C个格子,一个家伙要从(0,0)走到(R-1,C-1) 每次只有三次方向,分别是不动,向下,向右,告诉你这三个方向的概率,以及每走一步需要耗费两个能量,问你走到终点所需要耗费能量的数学期望: 回头再推次,思想跟以前的做过的类似 注意点:分母为0的处理 #include <cstdio> #include <cstring> #include <algorithm>

HDU 3853 概率dp

LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Submission(s): 2337    Accepted Submission(s): 951 Problem Description Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl).Homura wants to help he

hdu 4870(概率Dp)

首先我们以50分为一单位,于是赢一次得1分输一次扣2分,由于每次都用小号打,所以容易观察出最后达到20分时应该分别为20分和19分.我们设dp[i]为i到i+1分的期望步数.则dp[i]=p*1+(1-p)*(dp[i-2]+dp[i-1]+dp[i]+1),前者是赢的期望,后者由于输了2分,所以变成i+1分时需要从i-2->i-1->i->i+1,就是dp[i-2]+dp[i-1]+dp[i]+1了,f[i][j]表示大号为i分小号为j分的步数期望,Dp即可 代码https://git

hdu 4035 概率DP 成都网赛

http://acm.hdu.edu.cn/showproblem.php?pid=4035 学到: 1.先判断是不是树,其实凡是有图的感觉的,都看边数==点数-1是不是成立 2.树有时候区分老子跟孩子还是有必要的,这道题就是,不过是在dfs的时候,传参数的时候多加个表示父节点的参数而已 3.一定注意,概率DP对精度真的要求很高 开始的时候写1e-8,WA了好几发,改了1e-10  AC 4.注意分母为0的可能的时候加上判断 讲的很详细的题解:http://blog.csdn.net/morga

HDU 4405 概率期望DP

有 0到 n 个格子.掷骰子走路,求出到终点的数学期望,有飞行的路线. dp[i] 存储在i位置走到终点的期望. 转移方程dp[i]=(dp[i+1] ----> dp[i+6])/6+1; 有飞行路线则直接赋值 #include "stdio.h" #include "string.h" double dp[100010]; int hash[100010]; int main() { int n,m,x,y,i,j; while (scanf("

hdu 4035 概率dp

太吊了 1 /* 2 HDU 4035 3 4 dp求期望的题. 5 题意: 6 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 7 从结点1出发,开始走,在每个结点i都有3种可能: 8 1.被杀死,回到结点1处(概率为ki) 9 2.找到出口,走出迷宫 (概率为ei) 10 3.和该点相连有m条边,随机走一条 11 求:走出迷宫所要走的边数的期望值. 12 13 设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望.E[1]即为所求. 14 15 叶子结点: 16 E[i] =

hdu 5001 概率DP 图上的DP

http://acm.hdu.edu.cn/showproblem.php?pid=5001 当时一看是图上的就跪了 不敢写,也没退出来DP方程 感觉区域赛的题  一则有一个点难以想到 二则就是编码有点难度. 这个题: 我一直的思路就是1-能到达i的概率 就是不能到达i的概率,然后三维方程巴拉巴拉,,,,把自己搞迷糊 正确做法: dp[k][j]   经过j步到达k点 并且不经过i点的概率 这么设的原因是,就可以求不能到达i点的概率了.   不能到达i点的概率就是segma(dp[v][j-1]