Python实现数据结构和算法之桶排序

桶排序

桶排序从 1956 年就开始被使用,该算法的基本思想是由E.J.Issac 和 R.C.Singleton 提出来的。

这个算法就好比有 11 个桶,编号从 0~10。每出现一个数,就在对应编号的桶中放一个
小旗子,最后只要数数每个桶中有几个小旗子就 OK 了。例如 2 号桶中有 1 个小旗子,表示
2 出现了一次;3 号桶中有 1 个小旗子,表示 3 出现了一次;5 号桶中有 2 个小旗子,表示 5
出现了两次;8 号桶中有 1 个小旗子,表示 8 出现了一次。

代码

 1 def main():
 2     book =list()
 3     for _ in range(1001):
 4         book.append(0)
 5
 6     n = int(input(‘多少个数进行桶排序:‘))
 7
 8     for _ in range(n):
 9         t = int(input())
10         book[t] += 1
11
12     for i in reversed(range(1,1001)):
13         for j in range(book[i]):
14             print i
15
16 if __name__ == ‘__main__‘:
17     main()
时间: 2024-12-26 23:06:25

Python实现数据结构和算法之桶排序的相关文章

最快最简单的排序算法:桶排序

在我们生活的这个世界中到处都是被排序过的.站队的时候会按照身高排序,考试的名次需要按照分数排序,网上购物的时候会按照价格排序,电子邮箱中的邮件按照时间排序……总之很多东西都需要排序,可以说排序是无处不在.现在我们举个具体的例子来介绍一下排序算法. 首先出场的我们的主人公小哼,上面这个可爱的娃就是啦.期末考试完了老师要将同学们的分数按照从高到低排序.小哼的班上只有5个同学,这5个同学分别考了5分.3分.5分.2分和8分,哎考的真是惨不忍睹(满分是10分).接下来将分数进行从大到小排序,排序后是8

【数据结构与算法】选择排序

选择排序没什么好说的,直接上代码吧 public class SelectSort { public void selectSort(int[] in) { int inLength = in.length; int minIndex = 0; for (int i = 0; i < inLength; i++) { minIndex = i; for (int j = i + 1; j < inLength; j++) { if (in[j] < in[minIndex]) { min

【数据结构与算法】希尔排序

希尔排序的时间复杂度是O(n^1.3)~O(n^2),空间复杂度是O(1). 代码如下: /** * 源码名称: ShellSort.java * 日期:2014-08-11 * 程序功能:希尔排序 * 版权:[email protected] * 作者:A2BGeek */ public class ShellSort { public void shellSort(int[] in) { int length = in.length; int span = length / 2; int i

排序算法下——桶排序、计数排序和基数排序

桶排序.计数排序和基数排序这三种算法的时间复杂度都为 $O(n)$,因此,它们也被叫作线性排序(Linear Sort).之所以能做到线性,是因为这三个算法是非基于比较的排序算法,都不涉及元素之间的比较操作. 1. 桶排序(Bucket Sort)? 1.1. 桶排序原理 桶排序,顾名思义,要用到"桶".核心思想是将要排序的数据分到几个有序的桶里,每个桶的数据再单独进行排序.桶内排完序后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了. 1.2. 桶排序的时间复杂度分析 如

数据结构与算法之——八大排序算法

附:关于这个主题,网上好的文章已经数不胜数,本篇是整合后的文章. 正文: 一.概述 排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 本文所指八大排序就是内部排序. 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序.堆排序或归并排序序. 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短: 二.排序算法详述 1.

数据结构与算法之--高级排序:shell排序和快速排序【未完待续】

高级排序比简单排序要快的多,简单排序的时间复杂度是O(N^2),希尔(shell)排序的是O(N*(logN)^2),而快速排序是O(N*logN). 说明:下面以int数组的从小到大排序为例. 希尔(shell)排序 希尔排序是基于插入排序的,首先回顾一下插入排序,假设插入是从左向右执行的,待插入元素的左边是有序的,且假如待插入元素比左边的都小,就需要挪动左边的所有元素,如下图所示: ==> 图1和图2:插入右边的temp柱需要outer标记位左边的五个柱子都向右挪动 如图3所示,相比插入排序

[0x01 用Python讲解数据结构与算法] 关于数据结构和算法还有编程

忍耐和坚持虽是痛苦的事情,但却能渐渐地为你带来好处. ——奥维德 一.学习目标 · 回顾在计算机科学.编程和问题解决过程中的基本知识: · 理解“抽象”在问题解决过程中的重要作用: · 理解并实现抽象数据结构: · 复习Python编程语言 二.写在前面 自第一台电子计算机使用线路和开关传达人类的指令以来,我们编程的思考方式有了很大的改变,在很多方面,计算机技术的发展为计算机科学家提供了众多的工具和平台去实现他们的想法.高性能理器,高速网络和大内存使得计算机研究者必须掌握在这样复杂的螺旋式通道中

排序算法 之 桶排序

桶排序是一种效率很高的排序算法,它的时间复杂度为O(n),但桶排序有一定的限制,只有当待排序序列的元素为0到某一确定取值范围的整数时才适用,典型的例子比如成绩的排序等. 算法思想: 设待排序序列的元素取值范围为0到m,则我们新建一个大小为m+1的临时数组并把初始值都设为0,遍历待排序序列,把待排序序列中元素的值作为临时数组的下标,找出临时数组中对应该下标的元素使之+1:然后遍历临时数组,把临时数组中元素大于0的下标作为值按次序依次填入待排序数组,元素的值作为重复填入该下标的次数,遍历完成则排序结

算法导论------------桶排序算法之研究

举个来说明桶排序的过程,假设现在有A={0.78,0.17,0.39,0.26,0.72,0.94,0.21,0.12,0.23,0.68},桶排序如下所示: 研究过计数排序我们知道了----计数排序是假设输入是由一个小范围内的整数构成,而桶排序则假设输入由一个随机过程产生的,该过程将元素均匀而独立地分布在区间[0,1)上.当桶排序的输入符合均匀分布时,即可以线性期望时间运行.桶排序的思想是:把区间[0,1)划分成n个相同大小的子区间,成为桶(bucket),然后将n个输入数分布到各个桶中去,对