BZOJ 3930: [CQOI2015]选数

3930: [CQOI2015]选数

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 1130  Solved: 532
[Submit][Status][Discuss]

Description

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

Input

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

Output

输出一个整数,为所求方案数。

Sample Input

2 2 2 4

Sample Output

3

HINT

样例解释

所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)

其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)

对于100%的数据,1≤N,K≤10^9,1≤L≤H≤10^9,H-L≤10^5

Source

分析:

考虑可以把区间内的数都除以$k$,这样问题就转化为了$gcd$为$1$的方案数...

先算$n$个数字不同的情况,最后特判相同的情况...

考虑区间长度只有$10^5$,应该好好利用这个性质,也就是说,$gcd$的取值不可能超过区间长度,那么我们就记录$f[i]$代表$gcd$恰好位$i$的方案数,计算的时候先算出$gcd$至少为$i$的方案数,然后减去$f[2*i]$、$f[3*i]$...这样就可以$O(len)$地推出$f[1]$...

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std;

const int mod=1000000007,maxn=100000+5;

int n,k,l,r,len,lala,f[maxn];

inline int power(int x,int y){
	int res=1;
	while(y){
		if(y&1)
			res=1LL*res*x%mod;
		x=1LL*x*x%mod,y>>=1;
	}
	return res;
}

signed main(void){
	scanf("%d%d%d%d",&n,&k,&l,&r);
	if(l<=k&&k<=r) lala=1;
	l--,l/=k,r/=k,len=r-l;
	for(int i=len,x,y;i>=1;i--){
		x=l/i,y=r/i;
		f[i]=(power(y-x,n)-y+x)%mod;
		if(f[i]<0) f[i]+=mod;
		for(int j=i<<1;j<=len;j+=i) f[i]=((f[i]-f[j])%mod+mod)%mod;
	}
	printf("%d\n",f[1]+lala);
	return 0;
}

  



By NeighThorn

时间: 2024-12-28 16:11:21

BZOJ 3930: [CQOI2015]选数的相关文章

BZOJ 3930: [CQOI2015]选数 递推

3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=3930 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助

【刷题】BZOJ 3930 [CQOI2015]选数

Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. Input 输入一行,包含4个空格分开的正整数,依次为N,K,L和H. O

【递推】BZOJ 3930: [CQOI2015]选数

Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. Input 输入一行,包含4个空格分开的正整数,依次为N,K,L和H. O

BZOJ 3930 CQOI2015 选数 莫比乌斯反演

题目见 http://pan.baidu.com/s/1o6zajc2 此外不知道H-L<=10^5这个条件是干嘛的.... #include <map> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define M 10001000 #define INF 0x3f3f3f3f #define MOD 1000000007 u

3930: [CQOI2015]选数|递推|数论

题目让求从区间[L,H]中可重复的选出n个数使其gcd=k的方案数 转化一下也就是从区间[?Lk?,?Hk?]中可重复的选出n个数使其gcd=1的方案数 然后f[i]表示gcd=i的方案数,考虑去掉所有的数都是重复的情况,这种情况最后在判断一下加上 f[i]=sum?∑i|jf[j] #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<c

BZOJ 2734 集合选数(状态压缩DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2734 题意:给出一个由1到n的数字组成的集合.定义合法子集为若x在子集中则2x.3x均不能在子集中.求有多少个合法的子集. 思路: 1   3    9 2   6    12 4   12   36 对于上面的矩阵,我们发现就等价于不选相邻数字的方案数.因此枚举每个还没有用到的数字,建立以该数字为左上角的矩阵.接着就是状态压缩DP. int a[N][N]; i64 f[2][1<<

BZOJ 2734 集合选数

高妙的算法-- 可以构造出形如: 1  2  4   8   16  32 64 3  6  12  24 48 9  18 36 27 54 的矩阵 相邻的数不能被同时选到 因此 将每一个数构造进矩阵 然后状态压缩dp 根据乘法原理 就可以 得出所有的方案 1 #include <bits/stdc++.h> 2 #define mod 1000000001 3 using namespace std; 4 int n,vis[100010],ans,num[23]; 5 int mps[2

BZOJ3930 [CQOI2015]选数 【容斥】

题目 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. 输入格式 输入一行,包含4个空格分开的正整数,依次为N,K,L和H. 输出格式 输出一个整数

BZOJ3930:[CQOI2015]选数——题解

http://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://www.luogu.org/problemnew/show/P3172#sub 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最